Channel 1 Networks
Aaron is the webmaster of Channel 1 Networks and video editor/camera man for most all produced media content.
Homepage: http://c1n.tv
Posts by Channel 1 Networks
CU-NOAA study shows summer climate change, mostly warming
Nov 15th
“It is the first time that we show on a local scale that there are significant changes in summer temperatures,” said lead author CIRES scientist Irina Mahlstein. “This result shows us that we are experiencing a new summer climate regime in some regions.”
The technique, which reveals location-by-location temperature changes rather than global averages, could yield valuable insights into changes in ecosystems on a regional scale. Because the methodology relies on detecting temperatures outside the expected norm, it is more relevant to understand changes to the animal and plant life of a particular region, which scientists would expect to show sensitivity to changes that lie outside of normal variability.
“If the summers are actually significantly different from the way that they used to be, it could affect ecosystems,” said Mahlstein, who works in the Chemical Sciences Division of the National Oceanic and Atmospheric Administration’s Earth System Research Laboratory.
To identify potential temperature changes, the team used climate observations recorded from 1920 to 2010 from around the globe. The scientists termed the 30-year interval from 1920 to 1949 the “base period,” and then compared the base period to other 30-year test intervals starting every 10 years since 1930.
The comparison used statistics to assess whether the test interval differed from the base period beyond what would be expected due to yearly temperature variability for that geographical area.
Their analysis found that some changes began to appear as early as the 1960s, and the observed changes were more prevalent in tropical areas. In these regions, temperatures varied little throughout the years, so the scientists could more easily detect any changes that did occur, Mahlstein said.
The scientists found significant summer temperature changes in 40 percent of tropical areas and 20 percent of higher-latitude areas. In the majority of cases, the researchers observed warming summer temperatures, but in some cases they observed cooling summer temperatures.
“This study has applied a new approach to the question, ‘Has the temperature changed in local areas?’ ” Mahlstein said. The study is in press in the journal Geophysical Research Letters, a publication of the American Geophysical Union.
The study’s findings are consistent with other approaches used to answer the same question, such as modeling and analysis of trends, Mahlstein said. But this technique uses only observed data to come to the same result. “Looking at the graphs of our results, you can visibly see how things are changing,” she said.
In particular the scientists were able to look at the earlier time periods, note the temperature extremes, and observe that those values became more frequent in the later time periods. “You see how the extreme events of the past have become a normal event,” Mahlstein said.
The scientists used 90 years of data for their study, a little more than the average lifespan of a human being. So if inhabitants of those areas believe that summers have changed since they were younger, they can be confident it is not a figment of their imagination.
“We can actually say that these changes have happened in the lifetime of a person,” Mahlstein said.
Co-authors on the study were Gabriele Hegerl from the University of Edinburgh in Scotland and Susan Solomon from Massachusetts Institute of Technology.
CIRES is a joint institute of CU-Boulder and NOAA.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
CU project: Degraded military lands to get ecological boost
Nov 15th
Headed up by CU-Boulder Assistant Professor Nichole Barger, the research team is focused on developing methods to restore biological soil crusts — microbial communities primarily concentrated on soil surfaces critical to decreasing erosion and increasing water retention and soil fertility. Such biological soil crusts, known as “biocrusts,” can cover up to 70 percent of the ground in some arid ecosystems and are dominated by cyanobacteria, lichens, mosses, fungi and bacteria, she said.
The project is aimed at restoring fragile habitats in desert areas that have been affected by the movement of U.S. military vehicles, including tanks, as well as high foot traffic, said Barger, a faculty member in CU-Boulder’s ecology and environmental biology department. The team has two U.S. Department of Defense study sites — Fort Bliss, which straddles southern Texas and New Mexico and is located in a hot desert environment, and the Dugway Proving Ground in northwest Utah, seated in a cool desert environment.
“Biocrusts often are associated with increased soil nutrients and water retention, but their most important task is to stabilize soil surfaces against wind and water erosion,” Barger said. “While most biocrusts are relatively resilient to wind and water erosion, they are highly susceptible to compressional forces like those generated by foot and vehicle traffic associated with ground-based military activities.”
At military installations like Fort Bliss, the Dugway Proving Ground and in the California/Arizona Maneuver Area in the Mojave Desert used by Patton’s troops, scars of past military activity still are evident, said Barger. “You can go to these places and see that the biocrusts in the old tank tracks, for example, are completely different than nearby biocrusts undisturbed by military activity.”
The project is being funded by a five-year, $2.3 million grant from the Strategic Environmental Research and Development Program, the U.S. Department of Defense environmental science and technology program that partners with the U.S. Department of Energy and the Environmental Protection Agency. The research team also includes Jayne Belnap, Michael Duniway and Sasha Reed from the U.S. Geological Survey’s Biological Resources Division in Moab, Utah and Ferran Garcia-Pichel of Arizona State University in Tempe.
The first step of the program will be to grow biocrusts in laboratories at ASU, said Barger. “Our approach will be to expose laboratory biocrusts over time to a physiological ‘boot camp’ that includes increasing stressors like heat, light and dryness,” she said. “By doing that, we believe the biocrusts we eventually transplant into the study areas will have a higher probability of survival.”
The lab-grown biocrust products will be dried, bagged and transported to field test sites at each respective military installation and sprinkled on soil surfaces, said Barger.
Once in the field, the stress-adapted biocrusts developed in the lab nurseries for both hot desert and cool desert environments will be combined with other soil stabilization strategies, she said. The team, for example, will also experiment with adding polyacrylamide — a soil-stabilizing compound shown to increase soil porosity and reduce erosion, compaction, dustiness and water run-off — to the mix.
The researchers will evaluate the effectiveness of such soil “inoculations” and determine the optimum dosage for the test sites. Following the assisted recovery of the local biocrusts at Fort Bliss and the Dugway Proving Ground, the team will begin a series of seeding trials to develop strategies for native plant re-establishment, Barger said.
The last step of the project will involve a series of rainfall simulations and wind tunnel experiments combined with broad-scale soil erosion modeling to evaluate the influence of biocrust and native plant restoration in terms of precipitation and soil erosion.
While DOD military installations cover nearly 30 million acres — 70 percent of which are located in arid regions of the West — Barger said the research also could aid in the effective management of other federal lands. “We think our work on biocrusts also will be of interest to land managers at agencies like the Bureau of Land Management and the U.S. Forest Service,” Barger said.
The adaptation of biocrusts to extreme environments likely will come into play even more as climate change continues to heat and dry the West, she said. “We expect the drought in the Southwest to intensify as a result of climate change, and this project should tell us more about how adaptive these biocrusts are under shifting environmental conditions.”
The research project also has health implications, said Barger, since the disturbance of biocrusts can trigger the release of significant amounts of atmospheric dust, a dominant pollutant in some desert metropolitan areas. “There is a broad societal interest in stabilizing dryland soils in order to protect not only the functioning of local ecosystems but also human populations that reside in surrounding communities.”
“In terms of tackling an important environmental issue, this is by far the most exciting research project that I have been involved in,” said Barger, who has worked in Hawaii, Central America, South America, China and South Africa.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
Seventh graders to learn Hands Only CPR
Nov 13th
to train more than 100 7th Graders at
Peak to Peak Charter School in Hands Only CPR.
WHAT: Hands Only CPR Training hosted by Peak to Peak Charter School. The training will be presented by the American Heart Association and is sponsored by Exempla Healthcare. The students will listen to Debra Steveson a nurse at Good Samaritan Medical Center who will discuss heart health, and will hear from a young woman who survived sudden cardiac arrest at 17 years old.
The students will be trained in Hands Only CPR using the American Heart Association’s innovative CPR Anytime curriculum. It’s a flexible, convenient, and self-paced program for learning CPR. The kit provides everything you need to learn CPR at home including an inflatable CPR manikin, a 22-minute DVD, and includes information about infant CPR and choking protocols.
The CPR Anytime 22 minute course is designed to share with friends and family, so each student will be tasked with going home and training others in Hands Only CPR using their CPR Anytime Kit. Peak to Peak as a school, has set an aggressive goal to have 700 people trained in CPR through this program
WHEN: November, 15, 2012 / 11:15am to 1:15pm
WHERE Peak to Peak Charter School, 800 Merlin Drive, Lafayette, CO 80026
WHY: Less than 8% of sudden cardiac arrest victim survive because most people who witness the arrest do not know how to perform CPR. It could be your mother, your son, your co-worker, your best friend, or your neighbor.
Five minutes is the difference between life and death. If no CPR is provided or no defibrillation occurs within 3 to 5 minutes, the chances of survival drop.
About 5,800 children 18 years old and under suffer out-of-hospital cardiac arrest each year from all causes – including trauma, cardiovascular causes and sudden infant death syndrome.
AGENDA: 11:20am – Nurse Debra Steveson, Good Samaritan Medical Center
11:40am – Q& A & Student Activity on Heart Health
12:00pm – Lunch break
12:30pm – Cardiac Arrest Survivor Speakers
12:45pm – Hands Only CPR Training using CPR Anytime curriculum
1:15pm – Q&A Session
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]