Environmental News
Environmental News from Boulder, Colorado
CU study: Global warming no hoax in the Eastern Canadian Arctic
Oct 23rd
Average summer temperatures in the Eastern Canadian Arctic during the last 100 years are higher now than during any century in the past 44,000 years and perhaps as long ago as 120,000 years, says a new University of Colorado Boulder study.
The study is the first direct evidence the present warmth in the Eastern Canadian Arctic exceeds the peak warmth there in the Early Holocene, when the amount of the sun’s energy reaching the Northern Hemisphere in summer was roughly 9 percent greater than today, said CU-Boulder geological sciences Professor Gifford Miller, study leader. The Holocene is a geological epoch that began after Earth’s last glacial period ended roughly 11,700 years ago and which continues today.
Miller and his colleagues used dead moss clumps emerging from receding ice caps on Baffin Island as tiny clocks. At four different ice caps, radiocarbon dates show the mosses had not been exposed to the elements since at least 44,000 to 51,000 years ago.
Since radiocarbon dating is only accurate to about 50,000 years and because Earth’s geological record shows it was in a glaciation stage prior to that time, the indications are that Canadian Arctic temperatures today have not been matched or exceeded for roughly 120,000 years, Miller said.
“The key piece here is just how unprecedented the warming of Arctic Canada is,” said Miller, also a fellow at CU-Boulder’s Institute of Arctic and Alpine Research. “This study really says the warming we are seeing is outside any kind of known natural variability, and it has to be due to increased greenhouse gases in the atmosphere.”
A paper on the subject appeared online Oct. 23 in Geophysical Research Letters, a journal published by the American Geophysical Union. Co-authors include CU-Boulder Senior Research Associate Scott Lehman, former CU-Boulder doctoral student and now Prescott College Professor Kurt Refsnider, University of California Irvine researcher John Southon and University of Wisconsin, Madison Research Associate Yafang Zhong. The National Science Foundation provided the primary funding for the study.
Miller and his colleagues compiled the age distribution of 145 radiocarbon-dated plants in the highlands of Baffin Island that were exposed by ice recession during the year they were collected by the researchers. All samples collected were within 1 meter of the ice caps, which are generally receding by 2 to 3 meters a year. “The oldest radiocarbon dates were a total shock to me,” said Miller.
Located just east of Greenland, the 196,000-square-mile Baffin Island is the fifth largest island in the world. Most of it lies above the Arctic Circle. Many of the ice caps on the highlands of Baffin Island rest on relatively flat terrain, usually frozen to their beds. “Where the ice is cold and thin, it doesn’t flow, so the ancient landscape on which they formed is preserved pretty much intact,” said Miller.
To reconstruct the past climate of Baffin Island beyond the limit of radiocarbon dating, Miller and his team used data from ice cores previously retrieved by international teams from the nearby Greenland Ice Sheet.
The ice cores showed that the youngest time interval from which summer temperatures in the Arctic were plausibly as warm as today is about 120,000 years ago, near the end of the last interglacial period. “We suggest this is the most likely age of these samples,” said Miller.
The new study also showed summer temperatures cooled in the Canadian Arctic by about 5 degrees Fahrenheit from roughly 5,000 years ago to about 100 years ago – a period that included the Little Ice Age from 1275 to about 1900.
“Although the Arctic has been warming since about 1900, the most significant warming in the Baffin Island region didn’t really start until the 1970s,” said Miller. “And it is really in the past 20 years that the warming signal from that region has been just stunning. All of Baffin Island is melting, and we expect all of the ice caps to eventually disappear, even if there is no additional warming.”
Temperatures across the Arctic have been rising substantially in recent decades as a result of the buildup of greenhouse gases in Earth’s atmosphere. Studies by CU-Boulder researchers in Greenland indicate temperatures on the ice sheet have climbed 7 degrees Fahrenheit since 1991.
A 2012 study by Miller and colleagues using radiocarbon-dated mosses that emerged from under the Baffin Island ice caps and sediment cores from Iceland suggested that the trigger for the Little Ice Age was likely a combination of exploding tropical volcanoes – which ejected tiny aerosols that reflected sunlight back into space – and a decrease in solar radiation.
-CU-
Role of natural gas in municipal power generation to be examined
Oct 10th
Boulder to convene community working group on the future role of natural gas in local energy supply
The City of Boulder announced today that it will create a community working group of industry specialists and local stakeholders to explore concerns and opportunities related to the use of natural gas to generate electricity for the City of Boulder, should it decide to form a local electric utility. Natural gas will likely play a significant role in Boulder’s energy portfolio, whether the community continues to be served by Xcel Energy or by a municipal utility. The focus of the group’s work will be to examine issues and concerns related to fracking and methane releases and to explore current and possible industry best practices.
On Nov. 5, Boulder voters will be asked to weigh in on a ballot measure that would institute a five-year moratorium on fracking in Boulder and on Boulder-owned open space property. However, given the tremendous growth in natural gas production in Colorado, the current and future use of natural gas as an energy source for Boulder customers has raised concerns over fracking — a process that uses a pressurized water mixture to release oil or natural gas from deep underground.
In addition to discussing concerns over fracking, the community group will also discuss the issue of methane leakage. While it is widely accepted that burning natural gas emits significantly less carbon dioxide than burning coal, recent studies have found that using natural gas may actually release more greenhouse gases over its lifecycle. That’s because quantities of raw methane, a major component of natural gas, can escape into the atmosphere during natural gas extraction, production and distribution.
“If Boulder chooses to municipalize, before we commit to a particular energy portfolio, we want to address concerns around the use of natural gas supplied from fracking and how we can minimize the negative impacts through best practices or other means,” said Heather Bailey, executive director of energy strategy and electric utility development. “Natural gas is likely to be a necessary transition energy source as Boulder makes what we hope will be a dramatic shift away from coal and other fossil fuels toward renewable sources. Recognizing this, we have been working on what we can do as a municipal utility to influence the development of responsibly sourced gas that limits or eliminates the harmful impacts of fracking and methane release.”
Executive Director Bailey also commented that the city has a “unique opportunity” to benefit from a discussion with local experts on the feasibility of a future municipal utility to push aggressively towards responsible development of natural gas. Expertise from the University of Colorado, federal labs, as well as the numerous local companies and entrepreneurs developing leading-edge energy technologies could help Boulder in its work to curb climate change and support a robust clean energy market.
The city’s Energy Future team anticipates holding the first meeting of the natural gas community working group shortly after the Nov. 5 election. Members of the community, stakeholders and industry personnel who are interested in participating are encouraged to contact Heather Bailey at 303-441-1923 or baileyh@bouldercolorado.gov.
More information about the Energy Future project and associated municipalization exploration study is available at www.BoulderEnergyFuture.com.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
CU study: Spruce beetle infestation in N. Colo. tied to drought
Oct 10th
The new study is important because it shows that drought is a better predictor of spruce beetle outbreaks in northern Colorado than temperature alone, said lead study author Sarah Hart, a CU-Boulder doctoral student in geography. Drought conditions appear to decrease host tree defenses against spruce beetles, which attack the inner layers of bark, feeding and breeding in the phloem, a soft inner bark tissue, which impedes tree growth and eventually kills vast swaths of forest.

This spruce forest hit with a double whammy– Spruce bark beetles killed the trees then a forest fire burned it.
Spruce beetles, like their close relatives, mountain pine beetles, are attacking large areas of coniferous forests across the West. While the mountain pine beetle outbreak in the Southern Rocky Mountains is the best known and appears to be the worst in the historical record, the lesser known spruce beetle infestation has the potential to be equally or even more devastating in Colorado, said Hart, lead author on the new study.
“It was interesting that drought was a better predictor for spruce beetle outbreaks than temperature,” said Hart of the geography department. “The study suggests that spruce beetle outbreaks occur when warm and dry conditions cause stress in the host trees.”
A paper on the subject was published online in the journal Ecology. Co-authors include CU-Boulder geography Professor Thomas Veblen; former CU-Boulder graduate student Karen Eisenhart, now at Edinboro University of Pennsylvania; and former CU-Boulder students Daniel Jarvis and Dominik Kulakowski, now at Clark University in Worcester, Mass. The National Science Foundation and the National Geographic Society funded the study.
The new study also puts to rest false claims that fire suppression in the West is the trigger for spruce beetle outbreaks, said Veblen.
Spruce beetles range from Alaska to Arizona and live in forests of Engelmann spruce and subalpine fir trees in Colorado. The CU-Boulder study area included sites in the White River, Routt, Arapaho, Roosevelt and Grand Mesa national forests as well as in Rocky Mountain National Park.
The CU-Boulder team assembled a long-term record of spruce beetle outbreaks from the northern Front Range to the Grand Mesa in western Colorado using a combination of historical documents and tree ring data from 1650 to 2011. Broad-scale outbreaks were charted by the team from 1843-1860, 1882-1889, 1931-1957 and 2004 to 2010.
The researchers used a variety of statistical methods to tease out causes for variations in the dataset at 18 sites in Colorado. “The extent to which we could distinguish between the warming signals and the drought signals was surprising,” said Veblen. “These are two things that easily can get mixed together in most tree ring analyses.”
There are several lines of evidence that drought is the main driver of the spruce beetle outbreak. The new study showed when northwest Colorado was in a warm, wet climate period from 1976 to 1998, for example, both spruce beetle reproduction and tree defenses like “pitching” beetles out of tree interiors with resin were likely high. But during that period of warming, outbreak was minimal.
The strongest climate correlation to spruce beetle outbreaks was above average annual values for the Atlantic Multi-decadal Oscillation, or AMO, a long-term phenomenon that changes sea-surface temperatures in the North Atlantic. Believed to shift from cool to warm phases roughly every 60 years, positive AMO conditions are linked to warmer and drier conditions over much of North America, including the West.
Veblen said the AMO shifted from its cool to warm phase in the 1990s, meaning the climate phenomenon could be contributing to drought conditions in the West into the middle of this century. A 2006 tree-ring study involving Veblen, his former student, Thomas Kitzberger and researchers from several other institutions concluded that the warm phase of AMO also was correlated to increased wildfires in the West.
In addition to AMO, the researchers looked at two other ocean-atmosphere oscillations — the El Nino Southern Oscillation and the Pacific Decadal Oscillation — as well as past temperatures, precipitation and aridity to better understand the spruce beetle outbreaks. The team found that another effective predictor of drought conditions was summer “vapor pressure deficit,” a measurement of atmospheric dryness, said Veblen.
In the new study, the researchers were particularly interested in “radial growth” rates of tree rings from sub-canopy trees of various species in the study areas that thrived following outbreaks. One hallmark of spruce beetle outbreaks is that slow radial growth rates in such areas are followed by extremely rapid radial growth rates, an indication smaller trees flourish in the absence of the larger spruce trees because of decreased competition for water and increased opportunities for photosynthesis, said Hart.
The area of high-elevation forests affected by spruce beetles is growing in the West, Hart said. “In 2012, U.S. Forest Service surveys indicated that more area was under attack by spruce beetles than mountain pine beetles in the Southern Rocky Mountains, which includes southern Wyoming, Colorado and northern New Mexico,” she said. “The drought conditions that promote spruce beetle outbreak are expected to continue.”
One big concern about spruce beetle outbreaks is their effects on headwater streams that are important for water resources, said Veblen. “In the short term, trees killed by spruce beetles will lead to less water use by trees and more water discharge into streams. But in the long term, the absence of the trees killed by beetles may lead to less persistence of snow and earlier runoff.”
Veblen said it might seem counterintuitive to some that spruce-fir subalpine forests in Colorado are larger by area than lodgepole/ponderosa pine forests. “It is probably because spruce and subalpine forests are found in more remote areas not as visible to most people,” he said. “But potentially, the current spruce beetle outbreak could affect a larger area than the mountain pine beetle outbreak.”
The study had its beginnings in 1986, when Veblen and his students began compiling spruce and subalpine fir tree rings from various study sites in the Colorado mountains. Tree rings from individual trees — which carry information about weather, climate and even events like volcanic eruptions — can be matched up and read with rings from other trees, much like the pages of a book, from year to year and even from season to season.
-CU-