Environmental News
Environmental News from Boulder, Colorado
Boulder County Commissioners extend moratorium on oil & gas development
Jan 24th
Boulder County, Colo. – Tonight, following a public hearing on recently-adopted regulations for oil and gas development in unincorporated Boulder County, the County Commissioners voted unanimously to extend a temporary moratorium on new oil and gas drilling applications (currently set to end on Feb. 4) until June 10, 2013, and to further assess fees relative to the land use and transportation impacts of local oil and gas operations.
Expressing both a desire to see more work around developing renewable energy options for Boulder County and seeking support from county residents to take their concerns about oil and gas development to state legislators who are currently considering new state rules for drilling operations, the County Commissioners acknowledged that while they don’t think they can go far enough to satisfy all constituent concerns, they are doing everything they can to make sure “we have the most comprehensive and restrictive regulations around oil and gas drilling in the State of Colorado.“
County staff had requested an extension of the Temporary Moratorium on Boulder County’s Processing of Applications for Oil and Gas Development in order to develop a plan to implement the regulations adopted by the Board of County Commissioners in December 2012. Due to the complicated nature of the new restrictions, requirements, standards and conditions that replaced 19-year-old rules for how oil and gas development can occur on unincorporated lands, staff had asked for adequate time to create an Implementation Work Plan.
County staff also presented information from the Oil & Gas Roadway Impact Study to seek direction from the County Commissioners on how to ensure impacts of oil and gas development on the public transportation system are mitigated and the cost of such mitigation is fairly and equitably allocated. Actual fees were not considered for adoption at the hearing, but the Commissioners asked staff to come back in two to three months with a proposal for the maximum legally-defensible fees allowable to mitigate local impacts or an alternate mechanism to recover costs from industry’s impact on the county transportation system.
Staff estimated – and County Commissioners affirmed – that in order to prepare for processing of new drilling and well operation applications, four additional months were necessary. The major components of the Implementation Work Plan will include:
· Development of RFQ/RFP and hiring of consultants / outside expertise
· Staff trainings
· Coordination with involved departments and agencies
· Preparation of application materials, handouts, and public information including website
· Development and adoption of planning and permit fees
· Inspection schedules
· Updating internal databases and tracking systems
· Coordination with Industry on submission of applications
· Coordination with the COGCC to harmonize new State rules with County regulations
For more information about the county’s role in oil and gas development, visit the county’s Oil and Gas Development webpage or contact Jim Webster at 720-564-2600 or jbwebster@bouldercounty.org.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
CU researchers say deep ice cores show past Greenland warm period may be ‘road map’ for continued warming of planet
Jan 23rd
A new study by an international team of scientists analyzing ice cores from the Greenland ice sheet going back in time more than 100,000 years indicates the last interglacial period may be a good analog for where the planet is headed in terms of increasing greenhouse gases and rising temperatures.
The new results from the NEEM deep ice core drilling project led by the University of Copenhagen and involving the University of Colorado Boulder show that between 130,000 and 115,000 years ago during the Eemian interglacial period, the climate in north Greenland rose to about 14 degrees Fahrenheit warmer than today. Despite the strong warming signal during the Eemian — a period when the seas were roughly 15 to 25 feet higher than today — the surface of the north Greenland ice sheet near the NEEM facility was only a few hundred yards lower than it is today, an indication to scientists it contributed less than half of the total sea rise at the time.
The NEEM project involves 300 scientists and students from 14 countries and is led by Professor Dorthe Dahl-Jensen, director of the University of Copenhagen’s Centre of Ice and Climate. CU-Boulder geological sciences professor and ice core expert Jim White is the lead U.S. investigator on the project. The National Science Foundation’s Division of Polar Programs funded the U.S. portion of the effort.
The new Nature findings showed that about 128,000 years ago, the surface elevation of ice near the NEEM site was more than 650 feet higher than present but the ice was starting to thin by about 2 inches per year. Between about 122,000 and 115,000 years ago, Greenland’s surface elevation remained stable at roughly 425 feet below the present level. Calculations indicate Greenland’s ice sheet volume was reduced by no more than 25 percent between 128,000 years ago and 122,000 years ago, said White.
A paper on the subject was published in the Jan. 24 issue of Nature.
“When we calculated how much ice melt from Greenland was contributing to global sea rise in the Eemian, we knew a large part of the sea rise back then must have come from Antarctica,” said White, director of CU-Boulder’s Institute of Arctic and Alpine Research. “A lot of us had been leaning in that direction for some time, but we now have evidence that confirms that the West Antarctic ice sheet was a dynamic and crucial player in global sea rise during the last interglacial period.”
Dahl-Jensen said the loss of ice mass on the Greenland ice sheet in the early part of the Eemian was likely similar to changes seen there by climate scientists in the past 10 years. Other studies have shown the temperatures above Greenland have been rising five times faster than the average global temperatures in recent years, and that Greenland has been losing more than 200 million tons of ice annually since 2003. The Greenland ice loss study was led by former CU-Boulder scientist Isabella Velicogna, who is currently a faculty member at the University of California, Irvine.
The intense melt in the vicinity of NEEM during the warm Eemian period was seen in the ice cores as layers of re-frozen meltwater. Such melt events during the last glacial period were rare by comparison, showing that the surface temperatures at the NEEM site were in a cold, nearly constant state back then. But on July 12, 2012, satellite images from NASA indicated 97 percent of Greenland’s ice sheet surface had thawed as a result of warming temperatures.
“We were quite shocked by the warm surface temperatures observed at the NEEM ice camp in July 2012,” said Dahl-Jensen. “It was raining at the top of the Greenland ice sheet, and just as during the Eemian period, meltwater formed subsurface ice layers. While this was an extreme event, the present warming over Greenland makes surface melt more likely, and the predicted warming over Greenland in the next 50-100 years will very likely be so strong that we will potentially have Eemian-like climate conditions.”
The Greenland ice core layers — formed over millennia by compressed snow — are being studied in detail using a suite of measurements, including stable water isotope analysis that reveals information about temperature and greenhouse gas levels and moisture changes back in time. Lasers are used to measure the water stable isotopes and atmospheric gas bubbles trapped in the ice cores to better understand past variations in climate on an annual basis — similar in some ways to a tree-ring record.
The results from the Nature study provide scientists with a “road map” of sorts to show where a warming Earth is headed in the future, said White. Of the nine hottest years on Earth on record, eight have come since the year 2000. In 2007 the Intergovernmental Panel on Climate Change concluded that temperatures on Earth could climb by as much as 11 degrees F by 2100.
Increasing amounts of carbon dioxide in the atmosphere from sources like vehicle exhaust and industrial pollution — which have risen from about 280 parts per million at the onset of the Industrial Revolution to 391 parts per million today — are helping to raise temperatures on Earth, with no end in sight, said White.
“Unfortunately, we have reached a point where there is so much carbon dioxide in the atmosphere it’s going to be difficult for us to further limit our impact on the planet,” White said. “Our kids and grandkids are definitely going to look back and shake their heads at the inaction of this country’s generation. We are burning the lion’s share of oil and natural gas to benefit our lifestyle, and punting the responsibility for it.”
In the past, Earth’s journey into and out of glacial periods is thought to be due in large part to variations in its orbit, tilt and rotation that change the amount of solar energy delivered to the planet, he said. But the anthropogenic warming on Earth today could override such episodic changes, perhaps even staving off an ice age, White said.
While three previous ice cores drilled in Greenland in the last 20 years recovered ice from the Eemian, the deepest layers were compressed and folded, making the data difficult to interpret. Although there was some folding of the lowest ice layers in the NEEM core, sophisticated ice-penetrating radar helped scientists sort out and interpret the individual layers to paint an accurate picture of the warming of Earth’s Northern Hemisphere as it emerged from the previous ice age, White said.
In addition to White, other CU-Boulder co-authors on the NEEM paper include INSTAAR scientist Bruce Vaughn and graduate student Tyler Jones of INSTAAR and CU-Boulder’s Environmental Studies Program.
“It’s a challenge being on the ice sheet, because we are out of our comfort zones and are working long, physical hours in an environment that is extremely cold and where the sun never sets,” Jones said. “Being a member of the research team allowed me to understand the ice core recovery process and the science behind it in terms of learning more about past climates and the implications for future climate change.”
Other nations involved in NEEM include Belgium, Canada, France, Germany, Iceland, Japan, Korea, the Netherlands, Sweden, Switzerland and the United Kingdom. Other U.S. institutions involved in the effort include Oregon State University, Penn State, the University of California, San Diego and Dartmouth College.
For more information on INSTAAR go to http://instaar.colorado.edu/. Additional information, photos and videos on NEEM can be found at http://www.neem.ku.dk.
A video and a slide show on the project will be available on the CU-Boulder news site by clicking on the story headline at http://www.colorado.edu/news.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
CU researchers: Beetle killed trees are better than logging for watersheds
Jan 14th
buffers watersheds from nitrate pollution
A research team involving several scientists from the University of Colorado Boulder has found an unexpected silver lining in the devastating pine beetle outbreaks ravaging the West: Such events do not harm water quality in adjacent streams as scientists had previously believed.
According to CU-Boulder team member Professor William Lewis, the new study shows that smaller trees and other vegetation that survive pine beetle invasions along waterways increase their uptake of nitrate, a common disturbance-related pollutant. While logging or damaging storms can drive stream nitrate concentrations up by 400 percent for multiple years, the team found no significant increase in the nitrate concentrations following extensive pine beetle tree mortality in a number of Colorado study areas.
“We found that the beetles do not disturb watersheds in the same way as logging and severe storms,” said Lewis, interim director of CU’s Cooperative Institute for Research in Environmental Sciences. “They leave behind smaller trees and other understory vegetation, which compensate for the loss of larger pine trees by taking up additional nitrate from the system. Beetle-kill conditions are a good benchmark for the protection of sub-canopy vegetation to preserve water quality during forest management activities.”
A paper on the subject was published in the Jan. 14 issue of the Proceedings of the National Academy of Sciences.
“The U.S. Forest Service and other agencies have established harvesting practices that greatly mitigate damage to forests caused by logging, and they deserve credit for that,” said Lewis. “But this study shows just how important the survival of smaller trees and understory vegetation can be to stream water quality.”
In waterways adjacent to healthy pine forests, concentrations of nitrate is generally far lower than in rivers on the plains in the West like the South Platte, said Lewis. Nitrate pollution is caused by agricultural runoff from populated areas and by permitted discharges of treated effluent from water treatment facilities.
“In Colorado, many watersheds have lost 80 to 90 percent of their tree canopy as a result of the beetle epidemic,” said Lewis, also a faculty member in CU-Boulder’s ecology and evolutionary biology department. “We began to wonder whether the loss of the trees was reducing water quality in the streams. We knew that forestry and water managers were expecting big changes in water quality as a result of the pine beetle outbreak, so we decided to pool our university and federal agency resources in order to come up with an answer.”
Study co-author and CU-Boulder Research Associate James McCutchan of CIRES said the new results should help forest managers develop more effective ways to harvest timber while having the smallest effect possible on downstream ecosystems. “This study shows that at least in some areas, it is possible to remove a large part of the tree biomass from a watershed with a very minimal effect on the stream ecosystem,” he said.
Understory vegetation left intact after beetle outbreaks gains an ecological advantage in terms of survival and growth, since small trees no longer have to compete with large trees and have more access to light, water and nutrients, said McCutchan. Research by study co-author and former CU undergraduate Rachel Ertz showed concentrations of nitrate in the needles of small pines that survived beetle infestations were higher than those in healthy trees outside beetle-killed areas, another indication of how understory vegetation compensates for environmental conditions in beetle kill areas.
The researchers used computer modeling to show that in western forests, such a “compensatory response” provides potent water quality protection against the adverse effects of nitrates only if roughly half of the vegetation survives “overstory” mortality from beetle kill events, which is what occurs normally in such areas, said Lewis.
Other study co-authors included Leigh Cooper, Thomas Detmer and Thomas Veblen from CU-Boulder, John Stednick from Colorado State University, Charles Rhoades from the U.S. Forest Service, Jennifer Briggs and David Clow from the U.S. Geological Survey and Gene Likens of the Cary Institute of Ecosystem Studies in Millbrook, N.Y.
The severe pine beetle epidemic in Colorado and Wyoming forests is part of an unprecedented beetle outbreak that ranges from Mexico to Canada. A November 2012 study by CU-Boulder doctoral student Teresa Chapman showed the 2001-02 drought greatly accelerated the development of the mountain pine beetle epidemic.
The researchers measured stream nitrate concentrations at more than 100 sites in western Colorado containing lodgepole pines with a range of beetle-induced tree damage. The study area included measurements from the Fraser Experimental Forest near Granby, Colo., a 23,000-acre study area established by the USFS in 1937.
The new study was funded by the USFS, the USGS, the National Science Foundation, the National Oceanic and Atmospheric Administration and the National Park Service. CIRES is a joint research institute between CU-Boulder and NOAA.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]