Posts tagged CU
CU president pushing for completion of US 36 bus rapid transit
Sep 12th
Due to the delay in completion of Northwest Rail for the foreseeable future, President Benson and the coalition believe that it is critical to complete true Bus Rapid Transit (BRT) as soon as possible. The President has pledged his help to engage corridor executives and our transportation partners to ensure the BRT system is in place by the opening of the managed lanes in 2015, including a dedicated vehicle fleet, greater service frequency, real-time travel info and station area improvements.
Benson said that success will only come through collaboration and stressed the importance of working with RTD, CDOT, businesses, communities and groups such as 36 Commuting Solutions to collectively solve the problem. “We all have a vested interest, and working together will help us all meet our common goal,” said Benson.
DRCOG Approves $15 million for Phase 2 of the US 36 Express Lanes Project
<during their August board meeting, the Denver Regional Council of Governments (DRCOG) committed $15 million for Phase 2 of the US 36 Express Lanes Project, which will extend the express lanes from 88th Street to Table Mesa.
“This new funding from DRCOG brings us closer to completing Phase 2 of the project,” said 36 Commuting Solutions Chairperson, George Gerstle. “Though progress has been made, it is imperative that we secure the remaining funding needed to finish Phase 2 in order to make US 36 a truly multi-modal corridor.”
For more information on Phase 2 of the US 36 Express Lanes project,
CU led mission to study past climate on Mars enters final phase before slated 2013 launch
Sep 11th
The mission, NASA’s Mars Atmosphere And Volatile EvolutioN, or MAVEN, passed the critical agency milestone known as Key Decision Point-D, or KDP-D on Monday, said NASA officials. The key decision meeting moving MAVEN forward was held at NASA Headquarters in Washington and was chaired by NASA’s Science Mission Directorate.
“The spacecraft and instruments are all coming together at this point,” said CU-Boulder Professor Bruce Jakosky, the MAVEN principal investigator and associate director for science at the university’s Laboratory for Atmospheric and Space Physics, or LASP. “Although we’re focused on getting everything ready for launch right now, we aren’t losing sight of our ultimate objective — getting to Mars and making the science measurements.”
NASA’s $670 million MAVEN mission will be the first devoted to understanding the Martian upper atmosphere. The goal of MAVEN is to determine the role that loss of atmospheric gas to space played in changing the Martian climate through time. Clues on the Martian surface, including features resembling dry lakes and riverbeds as well as minerals that form only in the presence of water, suggest that Mars once had a denser atmosphere that supported liquid water on the surface, Jakosky said.
“I’m incredibly proud of how this team continues to meet every major milestone on schedule on its journey to Mars,” said David Mitchell, MAVEN project manager at NASA’s Goddard Space Flight Center in Greenbelt, Md. “Being ready for the start of system level integration and test is critically important to ultimately being ready for launch on November 18, 2013.”
KDP-D occurs after the project has completed a series of independent reviews that cover not only technical health of the project but also programmatic health, including schedule and cost. KDP-D represents the official transition from the Phase C development stage to Phase D in the mission life cycle. During Phase D, the spacecraft bus is completed, the science instruments are integrated into the spacecraft, spacecraft testing occurs and the MAVEN mission launches late in 2013.

Signs of water on Mars
The huge amount of public interest in NASA’s Curiosity Rover, which landed on Mars Aug. 6 and is currently being driven remotely around the planet, is no surprise to Jakosky. “Mars has a lot of similarities to Earth,” he said. “It’s the closest planet, it has similar day lengths, and it has an atmosphere, weather and geologic processes similar to those on our own planet.
“But the real kicker is the potential for life,” said Jakosky, who also directs the Center for Astrobiology at the University of Colorado. “Because of that, I think Mars has always held a special place in the hearts and minds of the public.”
Jakosky, also a professor in CU-Boulder’s geological sciences department, cautioned that there is much more work to be done before launch. “This decision by NASA marks the start of integration of all of the instruments on the spacecraft. It’s cool to see the spacecraft coming together, but there is a lot of work still to go and a lot of challenges to solve between now and when the spacecraft is ready for launch.”
The next major review for the MAVEN team is the Mission Operations Review in November 2012. This review assesses the project’s operational readiness and its progress towards launch. The project will continue to work with partners to deliver all instruments in the next four months.
“CU-Boulder’s participation in Mars exploration missions goes back decades, beginning with NASA’s Mariner 6 and Mariner 7 missions launched in 1969,” said Vice Chancellor for Research Stein Sture. “LASP is a proven training ground for students seeking hands-on experience in building, testing and flying space hardware and is the only institute in the world to have designed and built instruments that have been launched to every planet in the solar system.”
The MAVEN spacecraft will carry three instrument suites. The Particles and Fields Package, built by the University of California at Berkeley with some instrument elements from CU’s LASP and NASA’s Goddard Space Flight Center in Greenbelt, Md., contains six instruments that will characterize the solar wind and the ionosphere of the planet.
The Remote Sensing Package built by LASP will determine global characteristics of the upper atmosphere and ionosphere, while The Neutral Gas and Ion Mass Spectrometer, provided by NASA Goddard, will measure the composition and isotopes of neutrals and ions.
MAVEN will launch during a 20-day period in November-December 2013. It will go into orbit around Mars in September 2014, and, after a one-month checkout period, will make measurements from orbit for one Earth year.
In addition to leading the mission and providing instrumentation, CU-Boulder will provide science operations and direct education and public outreach efforts. NASA’s Goddard manages the project. Lockheed Martin of Littleton, Colo., is building the spacecraft and will perform mission operations. NASA’s Jet Propulsion Laboratory in Pasadena provides program management via the Mars Program Office, as well as navigation support, the Deep Space Network and the Electra telecommunications relay hardware and operations.
The MAVEN science team includes three LASP scientists from CU-Boulder heading instrument teams — Nick Schneider, Frank Eparvier and Robert Ergun — as well as a large supporting team of scientists, engineers and mission operations specialists.
MAVEN will include participation by a number of CU-Boulder graduate and undergraduate students in the coming years. Currently there are more than 100 undergraduate and graduate students working on research projects at LASP, which provides hands-on training for future careers as engineers and scientists, said Jakosky.
For more information about MAVEN visit http://lasp.colorado.edu/home/maven/ and www.nasa.gov/maven. For more information on LASP visithttp://lasp.colorado.edu/home/.
CU led mountain forest study shows vulnerability to climate change
Sep 9th
Forests where people live and play to be hit hardest
Led by CU-Boulder researcher Ernesto Trujillo and Assistant Professor Noah Molotch, the study team used the data — including satellite images and ground measurements — to identify the threshold where mid-level forests sustained primarily by moisture change to higher-elevation forests sustained primarily by sunlight and temperature. Being able to identify this “tipping point” is important because it is in the mid-level forests — at altitudes from roughly 6,500 to 8,000 feet — where many people live and play in the West and which are associated with increasing wildfires, beetle outbreaks and increased tree mortality, said Molotch.

Researcher Noah Molotch at work
“Our results provide the first direct observations of the snowpack-forest connections across broad spatial scales,” said Molotch, also a research scientist at CU-Boulder’s Institute of Arctic and Alpine Research. “Finding the tipping point between water-limited forests and energy-limited forests defines for us the region of the greatest sensitivity to climate change — the mid-elevation forests — which is where we should focus future research.”
While the research by Molotch and his team took place in the Sierra Nevada mountain range in California, it is applicable to other mountain ranges across the West, he said. The implications are important, since climate studies indicate the snowpack in mid-elevation forests in the Western United States and other similar forests around the world has been decreasing in the past 50 years because of regional warming.
Forests are drying and becoming more vulnerable
“We found that mid-elevation forests show a dramatic sensitivity to snow that fell the previous winter in terms of accumulation and subsequent melt,” said Molotch, also a scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “If snowpack declines, forests become more stressed, which can lead to ecological changes that include alterations in the distribution and abundance of plant and animal species as well as vulnerability to perturbations like fire and beetle kill.”

A paper on the subject was published online Sept. 9 in Nature Geosciences. Co-authors on the study include Ernesto Trujillo of INSTAAR and the Ecole Polytechnique Fédérale de Lausanne in Switzerland, Michael Golden and Anne Kelly of the University of California, Irvine, and Roger Bales of the University of California, Merced. The National Science Foundation and NASA funded the study.
Molotch said the study team attributed about 50 percent of the greenness in mid-elevation forests by satellites to maximum snow accumulation from the previous winter, with the other 50 percent caused by conditions like soil depth, soil nutrients, temperature and sunlight. “The strength of the relationship between forest greenness and snowpack from the previous year was quite surprising to us,” Molotch said.
The research team initially set out to identify the various components of drought that lead to vegetation stress, particularly in mountain snowpack, said Molotch. “We went after snowpack in the western U.S. because it provides about 60 to 80 percent of the water input in high elevation
mountains.”
The team used 26 years of continuous data from the Advanced Very High Resolution Radiometer, a space-borne sensor flying on a National Oceanic and Atmospheric Administration satellite, to measure the forest greenness. The researchers compared it to long-term data from 107 snow stations maintained by the California Cooperative Snow Survey, a consortium of state and federal agencies.
In addition, the researchers used information gathered from several “flux towers” in the southern Sierra Nevada mountain range, which measure the exchanges of carbon dioxide, water vapor and energy between terrestrial ecosystems and the atmosphere. Instruments on the towers, which are roughly 100 feet high, allowed them to measure the sensitivity of both mid-level and high-level mountainous regions in both wet and dry years — data that matched up well with the satellite and ground data, he said.
“The implications of this study are profound when you think about the potential for ecological change in mountainous environments in the West in the not too distant future,” said Molotch, an assistant professor in the geography department. “If we take our study and project forward in time when climate models are calling for warming and drying conditions, the implication is that forests will be increasingly water-stressed in the future and thus more vulnerable to fires and insect outbreaks.
“When you put this into the context of recent losses in Colorado and elsewhere in the West to forest fire devastation, then it becomes something we really have to pay attention to,” he said. “This tipping-point elevation is very likely to migrate up the mountainsides as the climate warms.”
–





















