Posts tagged environment
NOAA extends CU climate studies partnership for 5-10 years
Aug 30th
continue joint leadership of CIRES
The National Oceanic and Atmospheric Administration has selected the University of Colorado Boulder to continue a federal/academic partnership that extends NOAA’s ability to study climate change, improve weather models and better predict how solar storms can disrupt communication and navigation technologies.
The selection means that NOAA will continue funding the Cooperative Institute for Research in Environmental Sciences, or CIRES, for at least five years and up to 10 more years. CIRES was established at CU-Boulder in 1967.
The amount of the award is contingent on the availability of funding in the federal budget, but NOAA anticipates that up to $32 million may be available annually. Total NOAA funding is variable from year to year and is based on the number of projects the university proposes and NOAA approves.
Following a competitive process, NOAA selected CU-Boulder to administer the CIRES partnership which leverages university resources to expand understanding of the “Earth system” — the interrelationships among the atmosphere, oceans, land, living things and the sun’s energy.
“Improving our understanding of the Earth system is critically important as the build-up of greenhouse gases in the atmosphere is forcing changes in all of its processes,” said Robert Detrick, assistant administrator of the NOAA Office of Oceanic and Atmospheric Research and chairman of the NOAA Research Council. “The University of Colorado has been an excellent partner to NOAA in pursuing this mission.”
NOAA’s first cooperative institute, CIRES is marking its 45th anniversary this year and is now one of 18 NOAA cooperative institutes nationwide. NOAA competitively funds cooperative institutes at universities with strong research programs relevant to NOAA’s mission. These institutes provide resources and opportunities that extend beyond the agency’s own research capacity.
“Partnership in environmental research with the NOAA Boulder laboratories is the keystone of CIRES research,” said CIRES Interim Director William Lewis Jr. “We have great ambitions in joint research with NOAA over the next five years.”
The partnership allows researchers at CU-Boulder to receive support for research projects that may involve NOAA scientists, primarily at the Earth System Research Laboratory in Boulder as well as other NOAA cooperative institutes.
The CIRES partnership will focus on nine research themes:
- Air quality in a changing environment
- Climate forcing feedbacks and analysis
- Earth systems dynamics, variability and change
- Management and exploitation of geophysical data
- Regional science and applications
- Scientific outreach and education
- Space weather understanding and predictability
- Stratospheric processes and trends
- Systems and prediction models development
“With pressing issues like air quality, climate change and space weather now at the forefront globally, the University of Colorado Boulder is eager to continue this crucial partnership with NOAA,” said CU-Boulder Vice Chancellor for Research Stein Sture. “CIRES is known around the world for advancing our understanding of the complex Earth system and as a premier institution in educating the next generation of environmental scientists.”
NOAA supports cooperative institutes to conduct research, education, training and outreach aligned with its mission. Cooperative institutes also promote the involvement of students and postdoctoral scientists in NOAA-funded research. This unique setting provides NOAA the benefit of working with the complementary capabilities of a research institution that contribute to NOAA-related sciences ranging from satellite climatology and fisheries biology to atmospheric chemistry and coastal ecology.
For more information on CIRES visit http://cires.colorado.edu/. For more information on NOAA Cooperative Institutes visit http://www.nrc.noaa.gov/ci.
Only 2 % of students in CU dorms eligible for concealed weapons permit
Aug 16th
for weapons in university housing
The University of Colorado Boulder today announced it is amending housing contracts to ask students who live in undergraduate residence halls and hold a Colorado concealed carry permit, or CCP, to forgo bringing a handgun to campus. The campus also will accommodate those who hold a CCP in a graduate student housing complex off the main campus, provided the permit holders store their weapon in a safe within their dwelling when they are not carrying it.
The university also is asking residence advisers and faculty who live in university housing to sign the same housing agreement as a condition of their residence in these facilities.
The actions follow a ruling by the Colorado Supreme Court on March 5, which allows individuals with state-issued concealed carry permits to carry handguns on university or college properties. The University of Colorado Board of Regents last spring delegated the authority to the chancellors of CU-Boulder and CU-Colorado Springs to create a process to implement the Colorado Supreme Court ruling in the campus residence environment.

“I believe we have taken reasonable steps to adhere to the ruling of the Colorado Supreme Court, while balancing that with the priority of providing a safe environment for our students, faculty and staff,” said CU-Boulder Chancellor Philip P. DiStefano.
The approach would only affect, potentially, a very small number of individuals. An analysis by the University of Colorado shows that 0.6 percent of the faculty, staff and students on campus possess a CCP. A full 96 percent of CU-Boulder undergraduate students living in the residence halls are under the age of 21, and are thus ineligible to have a CCP. Of the 4 percent of eligible students, about half living on campus are CU Resident Advisers, or “RAs,” who as CU employees would not be permitted to live in undergraduate halls and possess a CCP.
Residence hall students who have a concealed carry permit or who obtain a concealed carry permit under Colorado law during the housing contract period may seek to be relocated to a University Apartment (if space is available) or be released from the residence hall contract without financial penalty.

Among the requirements for Colorado concealed carry permits are that the holder must be at least 21 years of age, complete an FBI background check, and have either previous military or police experience or proof of completion of a firearms training course.
Residence hall students may still store weapons at the University of Colorado Police Department on campus, which is open and available for drop off and pick up of weapons, 24 hours a day, seven days a week.
CU-Boulder will continue to follow the CU Board of Regents policy that prevents the open display of weapons including guns, explosives and knives on campus. Only law enforcement officials who display their badges are allowed to openly display weapons while on campus.
Under concealed carry, anyone with a permit may carry a concealed handgun on campus generally and into CU buildings, with the exception of Folsom Field and any other ticketed public performance venue. The purchase of a ticket to a CU public performance constitutes an agreement with the university to not carry a concealed weapon, even as a CCP holder, into the venue.
Students begin moving into CU-Boulder residence halls on Tuesday, Aug. 21, and classes begin for the semester on Aug. 27.
CU scientists find life forms in a lifeless land
Jun 14th
A new DNA analysis of rocky soils in the Martian-like landscape on some volcanoes in South America has revealed a handful of bacteria, fungi and other rudimentary organisms called archaea, which seem to have a different way of converting energy than their cousins elsewhere in the world.

“We haven’t formally identified or characterized the species,” said Ryan Lynch, a CU-Boulder doctoral student involved in the study. “But these are very different than anything else that has been cultured. Genetically, they’re at least 5 percent different than anything else in the DNA database of 2.5 million sequences.”
Life gets little encouragement on the incredibly dry slopes of the tallest volcanoes in the Atacama region, where CU-Boulder Professor Steve Schmidt and his team collected soil samples. Much of the sparse snow that falls on the terrain sublimates back to the atmosphere soon after it hits the ground, and the soil is so depleted of nutrients that nitrogen levels in the scientists’ samples were below detection limits.
One of the most hostile environments on the planet
Ultraviolet radiation in the high-altitude environment can be twice as intense as in a low-elevation desert, said Schmidt of CU-Boulder’s ecology and evolutionary biology department. While the researchers were on site, temperatures dropped to 14 degrees Fahrenheit one night and spiked to 133 F the next day.

How the newfound organisms survive under such circumstances remains a mystery. Although Ryan, Schmidt and their colleagues looked for genes known to be involved in photosynthesis and peered into the cells using fluorescent techniques to look for chlorophyll, they couldn’t find evidence that the microbes were photosynthetic.
Instead, they think the microbes might slowly generate energy by means of chemical reactions that extract energy and carbon from wisps of gases such as carbon monoxide and dimethylsulfide that blow into the desolate mountain area. The process wouldn’t give the bugs a high-energy yield, Lynch said, but it could be enough as it adds up over time. A paper on the findings has been accepted by the Journal of Geophysical Research-Biogeosciences, published by the American Geophysical Union.
While normal soil has thousands of microbial species in just a gram of soil, and garden soils even more, remarkably few species have made their home in the barren Atacama mountain soil, the new research suggests. “To find a community dominated by less than 20 species is pretty amazing for a soil microbiologist,” Schmidt said.
Nearly 20,000 feet in altitude, snowless for 48,000 years
He has studied sites in the Peruvian Andes where, four years after a glacier retreats, there are thriving, diverse microbe communities. But on these volcanoes on the Chile-Argentina border, which rise to altitudes of more than 19,685 feet and which have been ice-free for 48,000 years, the bacterial and fungal ecosystems have not undergone succession to more diverse communities. “It’s mostly due to the lack of water, we think,” he said. “Without water, you’re not going to develop a complex community.”
“Overall, there was a good bit lower diversity in the Atacama samples than you would find in most soils, including other mountainous mineral soils,” Lynch said. That makes the Atacama microbes very unusual, he added. They probably had to adapt to the extremely harsh environment, or may have evolved in different directions than similar organisms elsewhere due to long-term geographic isolation.
Growth on the mountain might be intermittent, Schmidt suggested, especially if soils only have water for a short time after snowfall. In those situations, there could be microbes that grow when it snows, then fall dormant, perhaps for years, before they grow again. High-elevation sites are great places to study simple microbial communities, ecosystems that haven’t evolved past the very basics of a few bacteria and fungi, Schmidt said.
“There are a lot of areas in the world that haven’t been studied from a microbial perspective, and this is one of the main ones,” he said. “We’re interested in discovering new forms of life, and describing what those organisms are doing, how they make a living.”
Schmidt’s lab, along with others, is studying how microorganisms travel from one site to another. One common method of microbe transport is through the air — they’re caught up in winds, sucked up into clouds, form rain droplets and then fall back to the ground somewhere else as precipitation.

But on mountains like Volcán Llullaillaco and Volcán Socompa, the high UV radiation and extreme temperatures make the landscape inhospitable to outside microbes. “This environment is so restrictive, most of those things that are raining down are killed immediately,” Schmidt said. “There’s a huge environmental filter here that’s keeping most of these things from growing.”
The next steps for the researchers are laboratory experiments using an incubator that can mimic the extreme temperature fluctuations to better understand how any organism can live in such an unfriendly environment. Studying the microbes and finding out how they can live at such an extreme can help set boundaries for life on Earth, Schmidt said, and tells scientists what life can stand. There’s a possibility that some of the extremophiles might utilize completely new forms of metabolism, converting energy in a novel way.
Schmidt also is working with astrobiologists to model what past conditions were like on Mars. With their rocky terrain, thin atmosphere and high radiation, the Atacama volcanoes are some of the most similar places on Earth to the Red Planet.
“If we know, on Earth, what the outer limits for life were, and they know what the paleoclimates on Mars were like, we may have a better idea of what could have lived there,” he said.
Other paper authors included Andrew King of Ecosystem Sciences, CSIRO Black Mountain in Acton, Australia; Mariá Farías of Laboratorio de Investigaciones Microbiologicas de Lagunas Andinas, Planto Piloto de Procesos Industriales Microbiologicas, CCT, CONICET in Tucuman, Argentina; Preston Sowell of Geomega, an environmental consulting firm in Boulder; and Christian Vitry of Museo de Arqueologia de Alta Montana in Salta, Argentina.





















