Posts tagged temperature

osmp-icon

Current Weather Conditions in Boulder

0

Clear
Wednesday 03/29 0%
Clear
Plenty of sunshine. High 56F. Winds NNE at 5 to 10 mph.
Partly Cloudy
Thursday 03/30 0%
Partly Cloudy
Cloudy skies early will become partly cloudy later in the day. High around 65F. Winds SW at 5 to 10 mph.
Rain
Friday 03/31 100%
Rain
Periods of rain. High 42F. Winds NE at 10 to 20 mph. Chance of rain 100%. Rainfall around a half an inch.

Extended weather forecast for Boulder, Colorado.
7 day weather forecast above
cuseal

CU develops solar toilet for third world use

0

Innovative solar-powered toilet developed
by CU-Boulder ready for India unveiling

A revolutionary University of Colorado Boulder toilet fueled by the sun that is being developed to help some of the 2.5 billion people around the world lacking safe and sustainable sanitation will be unveiled in India this month.

The self-contained, waterless toilet, designed and built using a $777,000 grant from the Bill & Melinda Gates Foundation, has the capability of heating human waste to a high enough temperature to sterilize human waste and create biochar, a highly porous charcoal, said project principal investigator Karl Linden, professor of environmental engineering. The biochar has a one-two punch in that it can be used to both increase crop yields and sequester carbon dioxide, a greenhouse gas.

The project is part of the Gates Foundation’s “Reinvent the Toilet Challenge,” an effort to develop a next-generation toilet that can be used to disinfect liquid and solid waste while generating useful end products, both in developing and developed nations, said Linden. Since the 2012 grant, Linden and his CU-Boulder team have received an additional $1 million from the Gates Foundation for the project, which includes a team of more than a dozen faculty, research professionals and students, many working full time on the effort.

Sol-Char Toilet 2014

According to the Gates Foundation, the awards recognize researchers who are developing ways to manage human waste that will help improve the health and lives of people around the world. Unsafe methods to capture and treat human waste result in serious health problems and death – food and water tainted with pathogens from fecal matter results in the deaths of roughly 700,000 children each year.

Linden’s team is one of 16 around the world funded by the Gates “Reinvent the Toilet Challenge” since 2011. All have shipped their inventions to Delhi, where they will be on display March 20-22 for scientists, engineers and dignitaries. Other institutional winners of the grants range from Caltech to Delft University of Technology in the Netherlands and the National University of Singapore.

The CU-Boulder invention consists of eight parabolic mirrors that focus concentrated sunlight to a spot no larger than a postage stamp on a quartz-glass rod connected to eight bundles of fiber-optic cables, each consisting of thousands of intertwined, fused fibers, said Linden.  The energy generated by the sun and transferred to the fiber-optic cable system — similar in some ways to a data transmission line — can heat up the reaction chamber to over 600 degrees Fahrenheit to treat the waste material, disinfect pathogens in both feces and urine, and produce char.

“Biochar is a valuable material,” said Linden. “It has good water holding capacity and it can be used in agricultural areas to hold in nutrients and bring more stability to the soils.” A soil mixture containing 10 percent biochar can hold up to 50 percent more water and increase the availability of plant nutrients, he said. Additionally, the biochar can be burned as charcoal and provides energy comparable to that of commercial charcoal.

Most public toilets look like this

Most public toilets look like this

Linden is working closely with project co-investigators Professor R. Scott Summers of environmental engineering and Professor Alan Weimer chemical and biological engineering and a team of postdoctoral fellows, professionals, graduate students, undergraduates and a high school student.

“We are doing something that has never been done before,” said Linden. “While the idea of concentrating solar energy is not new, transmitting it flexibly to a customizable location via fiber-optic cables is the really unique aspect of this project.” The interdisciplinary project requires chemical engineers for heat transfer and solar energy work, environmental engineers for waste treatment and stabilization, mechanical engineers to build actuators and moving parts and electrical engineers to design control systems, Linden said.

Tests have shown that each of the eight fiber-optic cables can produce between 80 and 90 watts of energy, meaning the whole system can deliver up to 700 watts of energy into the reaction chamber, said Linden. In late December, tests at CU-Boulder showed the solar energy directed into the reaction chamber could easily boil water and effectively carbonize solid waste.

While the current toilet has been created to serve four to six people a day, a larger facility that could serve several households simultaneously is under design with the target of meeting a cost level of five cents a day per user set by the Gates Foundation. “We are continuously looking for ways to improve efficiency and lower costs,” he said.

“The great thing about the Gates Foundation is that they provide all of the teams with the resources they need,” Linden said. “The foundation is not looking for one toilet and one solution from one team. They are nurturing unique ideas and looking at what the individual teams bring overall to the knowledge base.”

Linden, who called the 16 teams a “family of researchers,” said the foundation has funded trips for CU-Boulder team members to collaborate with the other institutions in places like Switzerland, South Africa and North Carolina. “Instead of sink or swim funding, they want every team to succeed. In some ways we are like a small startup company, and it’s unlike any other project I have worked on during my career,” he said.

CU-Boulder team member Elizabeth Travis from Parker, Colo., who is working toward a master’s degree in the engineering college’s Mortenson Center in Engineering for Developing Communities, said her interest in water and hygiene made the Reinvent the Toilet project a good fit. “It is a really cool research project and a great team,” she said. “Everyone is very creative, patient and supportive, and there is a lot of innovation. It is exciting to learn from all of the team members.”

“We have a lot of excitement and energy on our team, and the Gates Foundation values that,” Linden said.  “It is one thing to do research, another to screw on nuts and bolts and make something that can make a difference. To me, that’s the fun part, and the project is a nice fit for CU-Boulder because we have a high interest in developing countries and expertise in all of the renewable energy technologies as well as sanitation.”

The CU-Boulder team is now applying for phase two of the Gates Foundation Reinvent the Toilet grant to develop a field-worthy system to deploy in a developing country based on their current design, and assess other technologies that may enhance the toilet system, including the use of high-temperature fluids that can collect, retain and deliver heat.

-CU-

University of Colorado

Climate change: Big changes for big mammals

0

New CU-Boulder study shows differences
in mammal responses to climate change

If you were a shrew snuffling around a North American forest, you would be 27 times less likely to respond to climate change than if you were a moose grazing nearby.

That is just one of the findings of a new University of Colorado Boulder assessment led by Assistant Professor Christy McCain that looked at more than 1,000 different scientific studies on North American mammal responses to human-caused climate change. The CU-Boulder team eventually selected 140 scientific papers containing population responses from 73 North American mammal species for their analysis.

Large mammals, like this elk, are threatened by climate change

Large mammals, like this elk, are threatened by climate change

 

The studies assessed by the team examined seven different responses to climate change by individual mammal species: local extinctions of species known as extirpations, range contractions, range shifts, changes in abundance, seasonal responses, body size and genetic diversity. The researchers used statistical models to uncover whether the responses of the 73 mammals to a changing climate were related to aspects of their physiology and behavior or the location of the study population.

The analysis showed only 52 percent of the mammal species responded as expected to climate change, while 7 percent responded the opposite of expectations and the remaining 41 percent had no detectable response. The two main traits tied to climate change responses in the CU-Boulder study were large mammal body size and restricted times during a 24-hour day when particular mammal species are active, she said.

A paper on the study by McCain and former CU-Boulder postdoctoral fellow Sarah King was published online Jan. 22 in the journal Global Change Biology. The National Science Foundation funded the study. King is currently a research associate at Colorado State University.

While body size was by far the best predictor for response to climate change — almost all of the largest mammals responded negatively — the new study also showed that mammals active only during the day or only at night were twice as likely to respond to climate change as mammals that had flexible activity times, she said.

“This is the first time anyone has identified specific traits that tell us which mammals are responding to climate change and which are not,” said McCain of CU-Boulder’s ecology and evolutionary biology department.

McCain said she and King were surprised by some of the findings. “Overall the study suggests our large, charismatic fauna — animals like foxes, elk, reindeer and bighorn sheep — may be at more risk from climate change,” she said. “The thinking that all animals will respond similarly and uniformly to temperature change is clearly not the case.”

The researchers also found that species with higher latitudinal and elevation ranges, like polar bears, American pikas and shadow chipmunks, were more likely to respond to climate change than mammals living lower in latitude and elevation. The ability of mammals to hibernate, burrow and nest was not a good predictor of whether a species responded to climate change or not. American pikas have been extirpated from some of their previously occupied sites in the West, as have shadow chipmunks, which are in decline in California’s Yosemite National Park.

One of the most intriguing study findings was that some small mammals may shelter from climate change by using a wider array of “micro-climates” available in the vegetation and soil, she said. McCain compared the findings with the events at the K-T boundary 66 million years ago when an asteroid smacked Earth, drastically changing the climate and killing off the big dinosaurs but sparing many of the small mammals that found suitable shelter underground to protect them from the cataclysmic event.

“I think the most fascinating thing about our study is that there may be certain traits like body size and activity behaviors that allow some smaller mammals to expand the range of temperature and humidity available to them,” said McCain, also a curator of vertebrate zoology at the University of Colorado Museum of Natural History. “These areas and conditions are not available to bigger mammals that live above the vegetation and experience only ambient temperatures.”

The new study builds on a growing body of global information documenting the shifting behaviors and environments of organisms like flowers, butterflies and birds in response to a warming world, said McCain.

“If we can determine which mammals are responding to climate change and the ones that are at risk of disappearing, then we can tailor conservation efforts more toward those individual species,” said McCain. “Hopefully, this potential loss or decline of our national iconic mammals will spur more people to curb climate impacts by reducing overuse of fossil fuels.”

For more information on the ecology and evolutionary biology department visit http://ebio.colorado.edu. For more information on the University of Colorado Museum of Natural History visit http://cumuseum-archive.colorado.edu/About/directory.html.

 

Hot_Earth

Climate change could dry up Salt Lake City watersheds

0

New study: Rising temperatures
challenge Salt Lake City’s water supply

In an example of the challenges water-strapped Western cities will face in a warming world, new research shows that every degree Fahrenheit of warming in the Salt Lake City region could mean a 1.8 to 6.5 percent drop in the annual flow of streams that provide water to the city.

By midcentury, warming Western temperatures may mean that some of the creeks and streams that help slake Salt Lake City’s thirst will dry up several weeks earlier in the summer and fall, according to the new paper, published today in the journal Earth Interactions. The findings may help regional planners make choices about long-term investments, including water storage and even land-protection policies.

Dell Creek in Parley's Canyon, is a source of water for Salt Lake City.  A new study shows how climate change is likely to affect the various creeks and streams that help slake Salt Lake City's thirst.

Dell Creek in Parley’s Canyon, is a source of water for Salt Lake City. A new study shows how climate change is likely to affect the various creeks and streams that help slake Salt Lake City’s thirst.

“Many Western water suppliers are aware that climate change will have impacts, but they don’t have detailed information that can help them plan for the future,” said lead author Tim Bardsley, with NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “Because our research team included hydrologists, climate scientists and water utility experts, we could dig into the issues that mattered most to the operators responsible for making sure clean water flows through taps and sprinklers without interruption.”

Bardsley works for the CIRES Western Water Assessment, from the NOAA Colorado Basin River Forecast Center in Salt Lake City. For the new paper, he worked closely with colleagues from the city’s water utility, the National Center for Atmospheric Research (NCAR), NOAA’s Earth System Research Laboratory and the University of Utah.

The team relied on climate model projections of temperature and precipitation in the area, historical data analysis and a detailed understanding of the region from which the city utility obtains water. The study also used NOAA streamflow forecasting models that provide information for Salt Lake City’s current water operations and management.

The picture that emerged was similar, in some ways, to previous research on the water in the Interior West: Warmer temperatures alone will cause more of the region’s precipitation to fall as rain than snow, leading to earlier runoff and less water in creeks and streams in the late summer and fall.

“Many snow-dependent regions follow a consistent pattern in responding to warming, but it’s important to drill down further to understand the sensitivity of watersheds that matter for individual water supply systems,” said NCAR’s Andy Wood, a co-author.

The specifics in the new analysis—which creeks are likely to be impacted most and soonest, how water sources on the nearby western flank of the Wasatch Mountains and the more distant eastern flank will fare—are critical to water managers with Salt Lake City.

“We are using the findings of this sensitivity analysis to better understand the range of impacts we might experience under climate change scenarios,” said co-author Laura Briefer, water resources manager at the Salt Lake City Department of Public Utilities. “This is the kind of tool we need to help us adapt to a changing climate, anticipate future changes and make sound water-resource decisions.”

“Water emanating from our local Wasatch Mountains is the lifeblood of the Salt Lake Valley, and is vulnerable to the projected changes in climate,” said Salt Lake City Mayor Ralph Becker. “This study, along with other climate adaptation work Salt Lake City is doing, helps us plan to be a more resilient community in a time of climate change.”

Among the details in the new assessment:

  • Temperatures are already rising in northern Utah, about 2 degrees Fahrenheit in the last century, and continue to climb. Summer temperatures have increased especially steeply and are expected to continue to do so. Increasing temperatures during the summer irrigation season may increase water demand.
  • Every increase in a degree Fahrenheit means an average decrease of 3.8 percent in annual water flow from watersheds used by Salt Lake City. This means less water available from Salt Lake City’s watersheds in the future.
  • Lower-elevation streams are more sensitive to increasing temperatures, especially from May through September, and city water experts may need to rely on less-sensitive, higher-elevation sources in late summer, or more water storage.
  • Models tell an uncertain story about total future precipitation in the region, primarily because Utah is on the boundary of the Southwest (projected to dry) and the U.S. northern tier states (projected to get wetter).
  • Overall, models suggest increased winter flows, when water demand is lower, and decreased summer flows when water demand peaks.
  • Annual precipitation would need to increase by about 10 percent to counteract the stream-drying effect of a 5-degree increase in temperature.
  • A 5-degree temperature increase would also mean that peak water flow in the western Wasatch creeks would occur two to four weeks earlier in the summer than it does today.  This earlier stream runoff will make it more difficult to meet water demand as the summer irrigation season progresses.

Authors of the new paper, “Planning for an Uncertain Future: Climate Change Sensitivity Assessment Toward Adaptation Planning for Public Water Supply,” are Tim Bardsley, CIRES Western Water Assessment; Andrew Wood, NCAR and formerly of NOAA’s Colorado Basin River Forecast Center; Mike Hobbins, NOAA’s Earth System Research Laboratory, and formerly NOAA’s Colorado Basin River Forecast Center; Tracie Kirkham, Laura Briefer, and Jeff Niermeyer, Salt Lake City Department of Public Utilities, Salt Lake City, Utah; and Steven Burian, University of Utah, Salt Lake City.

Earth Interactions is jointly published by the American Geophysical Union, the American Meteorological Society and the Association of American Geographers.

CIRES is a joint institute of NOAA and CU-Boulder.

 

[includeme src="http://c1n.tv/boulder/media/bouldersponsors.html" frameborder="0" width="670" height="300"]

cuseal

CU study: Spruce beetle infestation in N. Colo. tied to drought

0

A new University of Colorado Boulder study indicates drought high in the northern Colorado mountains is the primary trigger of a massive spruce beetle outbreak that is tied to long-term changes in sea-surface temperatures from the Northern Atlantic Ocean, a trend that is expected to continue for decades.

The new study is important because it shows that drought is a better predictor of spruce beetle outbreaks in northern Colorado than temperature alone, said lead study author Sarah Hart, a CU-Boulder doctoral student in geography. Drought conditions appear to decrease host tree defenses against spruce beetles, which attack the inner layers of bark, feeding and breeding in the phloem, a soft inner bark tissue, which impedes tree growth and eventually kills vast swaths of forest.

This spruce forest hit with a double whammy-- Spruce bark beetles killed the trees then a forest fire burned it.

This spruce forest hit with a double whammy– Spruce bark beetles killed the trees then a forest fire burned it.

Spruce beetles, like their close relatives, mountain pine beetles, are attacking large areas of coniferous forests across the West. While the mountain pine beetle outbreak in the Southern Rocky Mountains is the best known and appears to be the worst in the historical record, the lesser known spruce beetle infestation has the potential to be equally or even more devastating in Colorado, said Hart, lead author on the new study.

“It was interesting that drought was a better predictor for spruce beetle outbreaks than temperature,” said Hart of the geography department.  “The study suggests that spruce beetle outbreaks occur when warm and dry conditions cause stress in the host trees.”

A paper on the subject was published online in the journal Ecology. Co-authors include CU-Boulder geography Professor Thomas Veblen; former CU-Boulder graduate student Karen Eisenhart, now at Edinboro University of Pennsylvania; and former CU-Boulder students Daniel Jarvis and Dominik Kulakowski, now at Clark University in Worcester, Mass. The National Science Foundation and the National Geographic Society funded the study.

The new study also puts to rest false claims that fire suppression in the West is the trigger for spruce beetle outbreaks, said Veblen.

Spruce beetles range from Alaska to Arizona and live in forests of Engelmann spruce and subalpine fir trees in Colorado.  The CU-Boulder study area included sites in the White River, Routt, Arapaho, Roosevelt and Grand Mesa national forests as well as in Rocky Mountain National Park.

The CU-Boulder team assembled a long-term record of spruce beetle outbreaks from the northern Front Range to the Grand Mesa in western Colorado using a combination of historical documents and tree ring data from 1650 to 2011. Broad-scale outbreaks were charted by the team from 1843-1860, 1882-1889, 1931-1957 and 2004 to 2010.

The researchers used a variety of statistical methods to tease out causes for variations in the dataset at 18 sites in Colorado. “The extent to which we could distinguish between the warming signals and the drought signals was surprising,” said Veblen.  “These are two things that easily can get mixed together in most tree ring analyses.”

European Spruce bark beetle

European Spruce bark beetle

There are several lines of evidence that drought is the main driver of the spruce beetle outbreak. The new study showed when northwest Colorado was in a warm, wet climate period from 1976 to 1998, for example, both spruce beetle reproduction and tree defenses like “pitching” beetles out of tree interiors with resin were likely high. But during that period of warming, outbreak was minimal.

The strongest climate correlation to spruce beetle outbreaks was above average annual values for the Atlantic Multi-decadal Oscillation, or AMO, a long-term phenomenon that changes sea-surface temperatures in the North Atlantic. Believed to shift from cool to warm phases roughly every 60 years, positive AMO conditions are linked to warmer and drier conditions over much of North America, including the West.

Veblen said the AMO shifted from its cool to warm phase in the 1990s, meaning the climate phenomenon could be contributing to drought conditions in the West into the middle of this century. A 2006 tree-ring study involving Veblen, his former student, Thomas Kitzberger and researchers from several other institutions concluded that the warm phase of AMO also was correlated to increased wildfires in the West.

In addition to AMO, the researchers looked at two other ocean-atmosphere oscillations  – the El Nino Southern Oscillation and the Pacific Decadal Oscillation  — as well as past temperatures, precipitation and aridity to better understand the spruce beetle outbreaks. The team found that another effective predictor of drought conditions was summer “vapor pressure deficit,” a measurement of atmospheric dryness, said Veblen.

In the new study, the researchers were particularly interested in “radial growth” rates of tree rings from sub-canopy trees of various species in the study areas that thrived following outbreaks. One hallmark of spruce beetle outbreaks is that slow radial growth rates in such areas are followed by extremely rapid radial growth rates, an indication smaller trees flourish in the absence of the larger spruce trees because of decreased competition for water and increased opportunities for photosynthesis, said Hart.

The area of high-elevation forests affected by spruce beetles is growing in the West, Hart said. “In 2012, U.S. Forest Service surveys indicated that more area was under attack by spruce beetles than mountain pine beetles in the Southern Rocky Mountains, which includes southern Wyoming, Colorado and northern New Mexico,” she said. “The drought conditions that promote spruce beetle outbreak are expected to continue.”

Spruce beetles have even hit Alaska.

Spruce beetles have even hit Alaska.

One big concern about spruce beetle outbreaks is their effects on headwater streams that are important for water resources, said Veblen.  “In the short term, trees killed by spruce beetles will lead to less water use by trees and more water discharge into streams. But in the long term, the absence of the trees killed by beetles may lead to less persistence of snow and earlier runoff.”

Veblen said it might seem counterintuitive to some that spruce-fir subalpine forests in Colorado are larger by area than lodgepole/ponderosa pine forests. “It is probably because spruce and subalpine forests are found in more remote areas not as visible to most people,” he said. “But potentially, the current spruce beetle outbreak could affect a larger area than the mountain pine beetle outbreak.”

The study had its beginnings in 1986, when Veblen and his students began compiling spruce and subalpine fir tree rings from various study sites in the Colorado mountains.  Tree rings from individual trees — which carry information about weather, climate and even events like volcanic eruptions — can be matched up and read with rings from other trees, much like the pages of a book, from year to year and even from season to season.

-CU-

CU-Boulder team develops potential new hydrogen fuel technology

0

A University of Colorado Boulder team has developed a radically new technique that uses the power of sunlight to efficiently split water into its components of hydrogen and oxygen, paving the way for the broad use of hydrogen as a clean, green fuel.

The CU-Boulder team has devised a solar-thermal system in which sunlight could be concentrated by a vast array of mirrors onto a single point atop a central tower up to several hundred feet tall. The tower would gather heat generated by the mirror system to roughly 2,500 degrees Fahrenheit (1,350 Celsius), then deliver it into a reactor containing chemical compounds known as metal oxides, said CU-Boulder Professor Alan Weimer, research group leader.

As a metal oxide compound heats up, it releases oxygen atoms, changing its material composition and causing the newly formed compound to seek out new oxygen atoms, said Weimer.  The team showed that the addition of steam to the system — which could be produced by boiling water in the reactor with the concentrated sunlight beamed to the tower — would cause oxygen from the water molecules to adhere to the surface of the metal oxide, freeing up hydrogen molecules for collection as hydrogen gas.

SHP3

“We have designed something here that is very different from other methods and frankly something that nobody thought was possible before,” said Weimer of the chemical and biological engineering department. “Splitting water with sunlight is the Holy Grail of a sustainable hydrogen economy.”

A paper on the subject was published in the Aug. 2 issue of Science. The team included co-lead authors Weimer and Associate Professor Charles Musgrave, first author and doctoral student Christopher Muhich, postdoctoral researcher Janna Martinek, undergraduate Kayla Weston, former CU graduate student Paul Lichty, former CU postdoctoral researcher Xinhua Liang and former CU researcher Brian Evanko.

 

One of the key differences between the CU method and other methods developed to split water is the ability to conduct two chemical reactions at the same temperature, said Musgrave, also of the chemical and biological engineering department. While there are no working models, conventional theory holds that producing hydrogen through the metal oxide process requires heating the reactor to a high temperature to remove oxygen, then cooling it to a low temperature before injecting steam to re-oxidize the compound in order to release hydrogen gas for collection.

 

“The more conventional approaches require the control of both the switching of the temperature in the reactor from a hot to a cool state and the introduction of steam into the system,” said Musgrave. “One of the big innovations in our system is that there is no swing in the temperature. The whole process is driven by either turning a steam valve on or off.”

“Just like you would use a magnifying glass to start a fire, we can concentrate sunlight until it is really hot and use it to drive these chemical reactions,” said Muhich. “While we can easily heat it up to more than 1,350 degrees Celsius, we want to heat it to the lowest temperature possible for these chemical reactions to still occur. Hotter temperatures can cause rapid thermal expansion and contraction, potentially causing damage to both the chemical materials and to the reactors themselves.”

Solar Hydrogen engine

Solar Hydrogen engine

In addition, the two-step conventional idea for water splitting also wastes both time and heat, said Weimer, also a faculty member at CU-Boulder’s BioFrontiers Institute. “There are only so many hours of sunlight in a day,” he said.

The research was supported by the National Science Foundation and by the U.S. Department of Energy.

With the new CU-Boulder method, the amount of hydrogen produced for fuel cells or for storage is entirely dependent on the amount of metal oxide — which is made up of a combination of iron, cobalt, aluminum and oxygen — and how much steam is introduced into the system. One of the designs proposed by the team is to build reactor tubes roughly a foot in diameter and several feet long, fill them with the metal oxide material and stack them on top of each other. A working system to produce a significant amount of hydrogen gas would require a number of the tall towers to gather concentrated sunlight from several acres of mirrors surrounding each tower.

Weimer said the new design began percolating within the team about two years ago. “When we saw that we could use this simpler, more effective method, it required a change in our thinking,” said Weimer.  “We had to develop a theory to explain it and make it believable and understandable to other scientists and engineers.”

Despite the discovery, the commercialization of such a solar-thermal reactor is likely years away. “With the price of natural gas so low, there is no incentive to burn clean energy,” said Weimer, also the executive director of the Colorado Center for Biorefining and Biofuels, or C2B2. “There would have to be a substantial monetary penalty for putting carbon into the atmosphere, or the price of fossil fuels would have to go way up.”

C2B2 is an arm of the Colorado Energy Research Collaboratory involving CU-Boulder, the Colorado School of Mines, Colorado State University and the National Renewable Energy Laboratory in Golden. The collaboratory works with industry partners, public agencies and other institutions to commercialize renewable energy technologies, support economic growth in the state and nation and educate the future workforce.

For more information on the chemical and biological engineering department visit http://www.colorado.edu/chbe/. For more information on C2B2 visit http://www.c2b2web.org. For more information on the Biofrontiers Institute visithttp://biofrontiers.colorado.edu.

cuseal

Ice-free Arctic winters could explain amplified warming during Pliocene

0


Tertiary flora and fauna
Year-round ice-free conditions across the surface of the Arctic Ocean could explain why the Earth was substantially warmer during the Pliocene Epoch than it is today, despite similar concentrations of carbon dioxide in the atmosphere, according to new research carried out at the University of Colorado Boulder.

 The last time researchers believe the carbon dioxide concentration in the atmosphere reached 400 ppm—between 3 and 5 million years ago during the Pliocene—the Earth was about 3.5 to 9 degrees Fahrenheit warmer (2 to 5 degrees Celsius) than it is today. During that time period, trees overtook the tundra, sprouting right to the edges of the Arctic Ocean, and the seas swelled, pushing ocean levels 65 to 80 feet higher.

Scientists’ understanding of the climate during the Pliocene has largely been pieced together from fossil records preserved in sediments deposited beneath lakes and on the ocean floor.

“When we put 400 ppm carbon dioxide into a model, we don’t get as warm a planet as we see when we look at paleorecords from the Pliocene,” said Jim White, director of CU-Boulder’s Institute of Arctic and Alpine Research and co-author of the new study published online in the journal Palaeogeography, Paleoclimatology, Palaeoecology. “That tells us that there may be something missing in the climate models.”

Scientists have proposed several hypotheses in the past to explain the warmer Pliocene climate. One idea, for example, was that the formation of the Isthmus of Panama, the narrow strip of land linking North and South America, could have altered ocean circulations during the Pliocene, forcing warmer waters toward the Arctic. But many of those hypotheses, including the Panama possibility, have not proved viable.

For the new study, led by Ashley Ballantyne, a former CU-Boulder doctoral student who is now an assistant professor of bioclimatology at the University of Montana, the research team decided to see what would happen if they forced the model to assume that the Arctic was free of ice in the winter as well as the summer during the Pliocene. Without these additional parameters, climate models set to emulate atmospheric conditions during the Pliocene show ice-free summers followed by a layer of ice reforming during the sunless winters.

pliocene2

“We tried a simple experiment in which we said, ‘We don’t know why sea ice might be gone all year round, but let’s just make it go away,’ ” said White, who also is a professor of geological sciences. “And what we found was that we got the right kind of temperature change and we got a dampened seasonal cycle, both of which are things we think we see in the Pliocene.”

In the model simulation, year-round ice-free conditions caused warmer conditions in the Arctic because the open water surface allowed for evaporation. Evaporation requires energy, and the water vapor then stored that energy as heat in the atmosphere. The water vapor also created clouds, which trapped heat near the planet’s surface.

“Basically, when you take away the sea ice, the Arctic Ocean responds by creating a blanket of water vapor and clouds that keeps the Arctic warmer,” White said.

White and his colleagues are now trying to understand what types of conditions could bridge the standard model simulations with the simulations in which ice-free conditions in the Arctic are imposed. If they’re successful, computer models would be able to model the transition between a time when ice reformed in the winter to a time when the ocean remained devoid of ice throughout the year.

Such a model also would offer insight into what could happen in our future. Currently, about 70 percent of sea ice disappears during the summertime before reforming in the winter.

“We’re trying to understand what happened in the past but with a very keen eye to the future and the present,” White said. “The piece that we’re looking at in the future is what is going to happen as the Arctic Ocean warms up and becomes more ice-free in the summertime.

“Will we continue to return to an ice-covered Arctic in the wintertime? Or will we start to see some of the feedbacks that now aren’t very well represented in our climate models? If we do, that’s a big game changer.”

CU-Boulder geological sciences Professor Gifford Miller also is a co-author of the study. Researchers from Northwestern University and the National Center for Atmospheric Research also were involved in the study, which was supported by a grant from the National Science Foundation.

-CU-[includeme src="http://c1n.tv/boulder/media/bouldersponsors.html" frameborder="0" width="670" height="300"]

 

cuseal

CU joins Sloan Digital Sky Survey to map stars, galaxies and quasars in 3D

0

The University of Colorado Boulder has become a full institutional member of the Sloan Digital Sky Survey-IV, an ambitious effort by some of the world’s top astronomers to map the celestial sky in three dimensions to learn more about the structure and evolution of the universe.

The survey, known as SDSS-IV, is the fourth stage of an effort that began with SDSS-I in 2000 to create the largest digital color image of the northern sky, said CU-Boulder Professor Michael Shull of the astrophysical and planetary sciences department, lead scientist in the effort by CU-Boulder to join the survey.  Since 2000, astronomers have mapped about one-half of the visible northern sky in three dimensions as part of the three prior Sloan sky surveys, discovering nearly half a billion astronomical objects ranging from asteroids and stars to galaxies and distant quasars in the process.

sloan sky survet

“We got into this because we think it is going to be a great recruitment tool for new students, and we have one of the best undergraduate majors in the country,” Shull said. “We also want to recruit high-caliber graduate students and postdoctoral researchers.”

The SDSS 2.5-meter telescope is located at the Apache Point Observatory in Sunspot, N.M., and is owned by the Astrophysical Research Consortium, or ARC, an organization of eight research institutions including CU-Boulder. The Sloan telescope sky-mapping project is funded by the Alfred P. Sloan Foundation, the participating institutions, the National Science Foundation and the U.S. Department of Energy Office of Science. Apache Point also hosts several other telescopes, including a 3.5-meter optical telescope owned and operated by ARC and routinely used by CU-Boulder.

ARC was formed in 1984 to create a national observatory that could provide telescope time to each member university based on its investment. Current ARC members in addition to CU-Boulder are the University of Chicago, Johns Hopkins University, Princeton University, the Institute of Advanced Study in Princeton, N.J., the University of Washington, the University of Virginia and New Mexico State University. CU-Boulder owns a one-eighth share of each of the two telescopes.

The costs to build new instruments, make observations and analyze data from the SDSS-IV from 2014 to 2020 is estimated to be between $50 million and $60 million, said Shull. The Sloan Foundation is contributing roughly $10 million, while additional funds are coming from more than 10 full institutional members, including CU, and from scientists with individual and small group memberships from various institutions.

Full institutional partners like CU-Boulder are paying roughly $1 million to join part four of the Sloan sky survey effort. CU-Boulder’s member fee was supported by university grants, awards, donations, general funds and indirect cost recovery savings. As an early institutional partner joining the Sloan IV survey before the end of the current fiscal year, CU received a $350,000 discount from ARC, said Shull.

Light from the Sloan telescope is directed to two powerful new instruments — a dual-channel visible light, or optical spectrograph, and a near-infrared spectrograph. Astronomical spectrographs break light into telltale colors much like a prism, revealing information about the size, temperature, composition and motion of celestial objects, said Shull.

The Sloan spectrographs will carry out a massive survey of galaxies and quasars in the distant universe, as well as stars in the Milky Way and thousands of nearby galaxies, said Shull, who also is a member of CU-Boulder’s Center for Astrophysics and Space Astronomy.

The new optical spectrograph on the Sloan telescope can take data from up to 1,000 galaxies or quasars simultaneously, he said. The instrument includes a circular aluminum plate roughly the size of a large pizza pan with 1,000 small perforations precisely drilled to match up with known astronomical objects in the sky. Each hole is plugged with an optical fiber attached to the spectrograph.

“I think this is going to be a perfect way for undergraduates to get their hands dirty working with ‘big data,’ said Shull. “A lot of undergraduates are better at computers than we are, so hiring a freshman or a sophomore who really wants to get into computing and big data sets in the field of astronomy is one of our goals.”

One of the biggest discoveries by SDSS-III astronomers came in 2012 when they detected the predicted signature of the first sound waves from matter and radiation in the early universe, said Shull. Sloan researchers used a multi-fiber spectrograph as part of the Baryon Oscillation Sky Survey, or BOSS, to detect the large-scale structures of ancient galaxies — similar in some ways to ripples on a pond — that were preserved after the Big Bang.

Shull, who plans to use the multi-fiber spectrograph to hunt for distant quasars in the early universe going back 13 million years, said the BOSS effort also is expected to reveal new information about so-called “dark energy.” A hypothetical form of energy that makes up the majority of the universe and produces a force that opposes gravity, dark energy is thought to be the cause of the accelerating expansion of the universe.

Another SDSS-IV effort will be a sky survey in the infrared to probe the distribution, dynamics and chemistry of stars and to explore the formation of our Milky Way Galaxy and its two companion galaxies, the Large Magellanic Cloud and the Small Magellanic Cloud, said Shull. Since the two Magellanic Clouds are best viewed from the southern hemisphere, SDSS scientists plan to collaborate with astronomers who are using the 2.5 meter du Pont Telescope at Las Campanas, Chile, on the effort.

SDSS-IV astronomers also will be using the BOSS instrument to study the internal structure of 10,000 nearby galaxies. The data will include precise velocities of stellar motions and chemical abundances for a large range of galaxy masses, types and environments. The data will complement observations of two newly completed American telescopes: the ALMA millimeter and submillimeter array radio telescope in Chile and the Expanded-Very Large Array radio telescope in New Mexico.

SDSS-IV also has had a significant citizen science component since 2007, when a data set of a million galaxies was released to the public, who were asked to classify them in three categories: Elliptical galaxies, merging galaxies and spiral galaxies, including the direction of the spiral arms. An astounding 70,000 classifications were received by SDSS scientists from the public within an hour of the data release, and during the first year more than 150,000 people made more than 50 million galaxy classifications.

CU has a legacy in space dating back nearly 70 years, said CU-Boulder Vice Chancellor for Research Stein Sture. It is the top funded public university by NASA, has a $70 million instrument now flying on the Hubble Space Telescope, is leading a $485 million mission to Mars and controls four NASA satellites from campus.

A video news story on the project is available at http://youtu.be/1Rke59L5cAo.

-CU-

[includeme src="http://c1n.tv/boulder/media/bouldersponsors.html" frameborder="0" width="670" height="300"]

cuseal

CU study hints conditions on Mars may support energy for life forms

0

A chemical reaction between iron-containing minerals and water may produce enough hydrogen “food” to sustain microbial communities living in pores and cracks within the enormous volume of rock below the ocean floor and parts of the continents, according to a new study led by the University of Colorado Boulder.

The findings, published in the journal Nature Geoscience, also hint at the possibility that hydrogen-dependent life could have existed where iron-rich igneous rocks on Mars were once in contact with water.

Mars-Planet

Scientists have thoroughly investigated how rock-water reactions can produce hydrogen in places where the temperatures are far too hot for living things to survive, such as in the rocks that underlie hydrothermal vent systems on the floor of the Atlantic Ocean. The hydrogen gases produced in those rocks do eventually feed microbial life, but the communities are located only in small, cooler oases where the vent fluids mix with seawater.

The new study, led by CU-Boulder Research Associate Lisa Mayhew, set out to investigate whether hydrogen-producing reactions also could take place in the much more abundant rocks that are infiltrated with water at temperatures cool enough for life to survive.

“Water-rock reactions that produce hydrogen gas are thought to have been one of the earliest sources of energy for life on Earth,” said Mayhew, who worked on the study as a doctoral student in CU-Boulder Associate Professor Alexis Templeton’s lab in the Department of Geological Sciences.

“However, we know very little about the possibility that hydrogen will be produced from these reactions when the temperatures are low enough that life can survive. If these reactions could make enough hydrogen at these low temperatures, then microorganisms might be able to live in the rocks where this reaction occurs, which could potentially be a huge subsurface microbial habitat for hydrogen-utilizing life.”

When igneous rocks, which form when magma slowly cools deep within the Earth, are infiltrated by ocean water, some of the minerals release unstable atoms of iron into the water. At high temperatures — warmer than 392 degrees Fahrenheit — scientists know that the unstable atoms, known as reduced iron, can rapidly split water molecules and produce hydrogen gas, as well as new minerals containing iron in the more stable, oxidized form.

Mayhew and her co-authors, including Templeton, submerged rocks in water in the absence of oxygen to determine if a similar reaction would take place at much lower temperatures, between 122 and 212 degrees Fahrenheit. The researchers found that the rocks did create hydrogen — potentially enough hydrogen to support life.

To understand in more detail the chemical reactions that produced the hydrogen in the lab experiments, the researchers used “synchrotron radiation” — which is created by electrons orbiting in a manmade storage ring — to determine the type and location of iron in the rocks on a microscale.

The researchers expected to find that the reduced iron in minerals like olivine had converted to the more stable oxidized state, just as occurs at higher temperatures. But when they conducted their analyses at the Stanford Synchrotron Radiation Lightsource at Stanford University, they were surprised to find newly formed oxidized iron on “spinel” minerals found in the rocks. Spinels are minerals with a cubic structure that are highly conductive.

Finding oxidized iron on the spinels led the team to hypothesize that, at low temperatures, the conductive spinels were helping facilitate the exchange of electrons between reduced iron and water, a process that is necessary for the iron to split the water molecules and create the hydrogen gas.

“After observing the formation of oxidized iron on spinels, we realized there was a strong correlation between the amount of hydrogen produced and the volume percent of spinel phases in the reaction materials,” Mayhew said. “Generally, the more spinels, the more hydrogen.”

Not only is there a potentially large volume of rock on Earth that may undergo these low temperature reactions, but the same types of rocks also are prevalent on Mars, Mayhew said. Minerals that form as a result of the water-rock reactions on Earth have been detected on Mars as well, which means that the process described in the new study may have implications for potential Martian microbial habitats.

Mayhew and Templeton are already building on this study with their co-authors, including Thomas McCollom at CU-Boulder’s Laboratory for Atmospheric and Space Physics, to see if the hydrogen-producing reactions can actually sustain microbes in the lab.

This study was funded by the David and Lucille Packard Foundation and with a U.S. Department of Energy Early Career grant to Templeton.

-CU-

[includeme src="http://c1n.tv/boulder/media/bouldersponsors.html" frameborder="0" width="670" height="300"]

Hot_Earth

As the planet warms faster, more species will be increasingly at risk

0

The Earth’s climate zones are shifting at an accelerating pace, says a new study led by a scientist at the CU’s Cooperative Institute for Research in Environmental Sciences.

global-warming-study-2

The acceleration of change means that the species inhabiting each zone have less time to adapt to the climatic changes, said lead author Irina Mahlstein, a CIRES scientist who works at NOAA’s Earth System Research Laboratory in Boulder, Colo. “The warmer the climate gets, the faster the climate zones are shifting.  This could make it harder for plants and animals to adjust.”

The study is the first to look at the accelerating pace of the shifting of climate zones, which are areas of the Earth defined by annual and seasonal cycles of temperature and precipitation, as well as temperature and precipitation thresholds of plant species. Over 30 different climate zones are found on Earth; examples include the equatorial monsoonal zone, the polar tundra zone and cold arid desert zone.

“A shift in the climate zone is probably a better measure of ‘reality’ for living systems, more so than changing temperature by a degree or precipitation by a centimeter,” said Mahlstein.

The scientists used climate model simulations and a well-known ecosystem classification scheme to look at the shifts between climate zones over a two-century period, 1900 to 2098. The team found that for an initial 3.6 degrees Fahrenheit of warming, about 5 percent of Earth’s land area shifts to a new climate zone.

The models show that the pace of change quickens for the next 3.6 F of warming as an additional 10 percent of the land area shifts to a new climate zone.  The paper was published online in the journal Nature Climate Change on April 21.

Certain regions of the globe, such as northern middle and high latitudes, will undergo more changes than other regions, such as the tropics, the scientists found. In the tropics, mountainous regions will experience bigger changes than low-altitude areas.

In the coming century, the findings suggest that frost climates — the coldest climate zone of the planet — will largely decrease.  In general, dry regions in different areas of the globe will increase, and a large fraction of land area will change from cool summers to hot summers, according to the study.

The scientists also investigated whether temperature or precipitation had a greater impact on how much of the land area changed zones. “We found that temperature is the main factor, at least through the end of this century,” said Mahlstein.

John Daniel at the NOAA Earth System Research Laboratory and Susan Solomon at the Massachusetts Institute of Technology co-authored the study.

-CU press release

[includeme src="http://c1n.tv/boulder/media/bouldersponsors.html" frameborder="0" width="670" height="300"]

Go to Top