News
News from Boulder, Colorado and Boulder Channel 1 News editors To advertise please call 303-447-8531
CU study: Soot suspect in mid-1800s Alps glacier retreat
Sep 2nd
The research, published Sept. 2 in the Proceedings of the National Academy of Sciences, may help resolve a longstanding scientific debate about why the Alps glaciers retreated beginning in the 1860s, decades before global temperatures started rising again.
Thomas Painter, a snow and ice scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., is lead author of the study, and co-authors include Waleed Abdalati, Director of the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder.
Glacier records in the central European Alps dating back to the 1500s show that between 1860 and 1930, loosely defined as the end of the Little Ice Age in Europe, large valley glaciers in the Alps abruptly retreated by an average of nearly 0.6 mile (1 kilometer). Yet weather in Europe cooled by nearly 1.8 degrees Fahrenheit (1 degree Celsius) during that time. Glaciologists and climatologists have struggled to understand the mismatch between the climate and glacier records.
“Something was missing from the equation,” Painter said.
To investigate, he and his colleagues turned to history. In the decades following the 1850s, Europe was undergoing a powerful economic and atmospheric transformation spurred by industrialization. Residents, transportation, and perhaps most importantly, industry in Western Europe began burning coal in earnest, spewing huge quantities of black carbon and other dark particles into the atmosphere.
When black carbon particles settle on snow, they darken the surface. This melts the snow and exposes the underlying glacier ice to sunlight and relatively warm air earlier in the year, allowing more and faster melt.
To determine how much black carbon was in the atmosphere and the snow when the Alps glaciers began to retreat, the researchers studied ice cores drilled from high up on several European mountain glaciers. By measuring the levels of carbon particles trapped in the ice core layers and taking into consideration modern observations of the distribution of pollutants in the Alps, they could estimate how much black carbon was deposited on glacial surfaces at lower elevations, where levels of black carbon tend to be highest.
The team then ran computer models of glacier behavior, starting with recorded weather conditions and adding the impact of lower-elevation black carbon. By including this impact, the simulated glacier mass loss and timing finally were consistent with the historic record of glacial retreat, despite the cool temperatures of the time.
“This study uncovers some likely human fingerprints on our changing environment,” Abdalati said. “It’s a reminder that the actions we take have far-reaching impacts on the environment in which we live.”
“We must now look closer at other regions on Earth, such as the Himalaya, to study the present-day impacts of black carbon on glaciers,” said Georg Kaser, a study co-author from the University of Innsbruck and lead author of the Working Group I Cryosphere chapter of the Intergovernmental Panel on Climate Change’s upcoming Fifth Assessment Report.
Other institutions participating in the study include the University of Michigan, Ann Arbor, and the University of California, Davis.
CIRES is a joint institute of the National Oceanic and Atmospheric Administration and CU-Boulder.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
Input sought on electric-assisted bikes on multi-use paths
Aug 29th
The public is invited to attend a public meeting from 5 to 7 p.m. on Wednesday, Sept. 4, to learn more about options being considered for a proposed electric-assisted bicycle (e-bikes) pilot project. The meeting will be held at the Boulder County Clerk and Recorder building located at 1750 33rd St., in the Houston Room on the first floor. For those interested, e-bike users and retailers will offer the opportunity to test ride e-bikes and learn more about the technology from 4 to 5 p.m. prior the meeting.
This effort is part of the ‘Complete Streets’ focus area of the current process to update to the city’s Transportation Master Plan (TMP).
This meeting is a follow-up to an initial e-bikes public meeting held in early August. That meeting introduced the potential pilot project to the community and initiated discussions about e-bike use on multi-use paths. At the Sept. 4 meeting, transportation staff will present options under consideration for amending the definition of an e-bike and for testing e-bike use on multi-use paths. If residents are not able to attend the public meeting, the city is also collecting feedback on e-bikes with a survey available here: www.surveymonkey.com/s/E-bikesurvey. City staff will also be performing in-person surveys on multi-use paths around Boulder.
Currently, e-bikes are only allowed in on roadways and on-street bicycle lanes. The potential pilot program would allow e-bikes on off-street multi-use paths, not including open space trails.
Comments from the public meeting and other outreach events will be used to inform the final pilot proposal.
The Transportation Advisory Board will hold a public hearing on e-bikes on Sept. 23 and make a formal recommendation to City Council. Council will consider the pilot ordinance at a first reading on Oct. 1; a second reading and public hearing will be held on Oct. 22. If approved by council, the pilot project would be launched in November 2013. Based on community feedback and results from the pilot project, council would evaluate whether to continue to allow the use of e-bikes on multi-use paths.
E-bikes are part of the city’s bicycle innovations under review as part of the TMP update’s “living laboratory” concept. Throughout the summer/fall, test facilities and pilot program will be launched to better understand transportation choices and identify strategies that encourage more people in our community to walk and bike.
For more information about the TMP update and to sign up for the ‘Community Feedback Panel’ for bicycle innovations, visit www.BoulderTMP.net. To participate in the online community conversation, visitwww.inspireboulder.com.
–CITY–
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
$6 million CU-Boulder instrument to fly on Sept. 6 NASA mission to moon
Aug 29th
A $6 million University of Colorado Boulder instrument designed to study the behavior of lunar dust will be riding on a NASA mission to the moon now slated for launch on Friday, Sept. 6, from the agency’s Wallops Flight Facility in Virginia.
The mission, known as the Lunar Atmosphere and Dust Environment Explorer, or LADEE, will orbit the moon to better understand its tenuous atmosphere and whether dust particles are being lofted high off its surface. The $280 million LADEE mission, designed, developed, integrated and tested at NASA’s AMES Research Center in Moffett Field, Calif., will take about a month to reach the moon and another month to enter the proper elliptical orbit and to commission the instruments. A 100-day science effort will follow.
“We are ready and excited for launch,” said CU-Boulder physics Professor Mihaly Horanyi of the Laboratory for Atmospheric and Space Physics, principal investigator for the Lunar Dust Experiment, or LDEX. “We think our instrument can help answer some important questions related to the presence and transport of dust in the lunar atmosphere.”
One unanswered question since the days of the Apollo program is why astronauts saw a pre-sunrise glow above the lunar horizon, said Horanyi, who directs LASP’s Colorado Center for Lunar Dust and Atmospheric Studies. “The glow has been suggested to be caused by dust particles that were electrically charged by solar ultraviolet light, causing them to lift off from the moon’s surface.”
About the size of a small toaster oven, the LDEX instrument will be able to chart the existence, size and individual velocities of tiny dust particles as small as 0.6 microns in diameter. For comparison, a standard sheet of paper is about 100 microns thick. A collision between a dust particle and a hemisphere-shaped target on LDEX generates a unique electrical signal inside the instrument to allow scientists to detect individual particles, said Horanyi.
Horanyi said clouds of dust specks seemingly observed by astronauts hovering over the moon likely weren’t clouds at all. “If you watch a cement truck on the highway, it seems to be carrying a dust cloud along with it. But what is actually happening is that every speck of dirt coming off the truck is falling onto the highway,” he said.
“The specks have very short lifespans, and the cloud that appears to surround the truck is actually a continual rain of dust from the vehicle to the pavement,” he said. “Similarly, the smallest lunar dust particles could also continually lift off and fall back onto the surface.”
Knowing more about the behavior of lunar dust could be of use for future human expeditions to the moon, including potential colonization efforts. Learning more about lunar dust also might help scientists better understand dust on other moons in the solar system — like Phobos and Deimos that orbit Mars – that have been suggested by some as possible initial landing posts for crewed missions headed to the Red Planet.
LADEE also is carrying an ultraviolet and visible light spectrometer, a neutral mass spectrometer and a lunar laser communications demonstration.
Astronauts walking on the moon sank into a shallow layer of dust, thought to be a product of millions of years of meteoric and interstellar particle bombardment, he said. “The beauty of physics is that we believe the same processes occur throughout the universe,” he said. “What we see on the moon may well apply to Mercury, Phobos, Deimos or asteroids, which all have very tenuous atmospheres.”
When the LADEE spacecraft is inserted into an elliptical orbit, its closest approach will be less than 20 miles from the lunar surface. “The closer we can get to the surface the better,” he said.
“This is a very exciting mission that will answer an almost 50-year-old question in space science,” said CU-Boulder graduate student Jamey Szalay, who is writing data analysis software for the mission that will allow the team to analyze science results immediately after data is received from the spacecraft. “Given the convenient duration of the mission and promising science return, I’m very fortunate to be a part of the science team — it’s a dream project for any graduate student in space sciences to be working on.”
Horanyi also is the principal investigator on CU-Boulder’s Student Dust Counter, a simpler instrument than LDEX flying on NASA’s New Horizons mission that was launched in 2006 to explore Pluto and the Kuiper Belt, a massive region beyond the planets containing icy objects left over from the formation of the solar system. The Student Dust Counter was designed, built, tested and operated entirely by students, primarily undergraduates, at LASP and has been collecting data for the past seven years. New Horizons is now more than 2.5 billion miles from Earth and will arrive at Pluto in two years.
CU-Boulder researcher David James, who now is working on LDEX, got his start helping to build SDC. “Although I was a student in a lab back then, it was almost like working in the private sector,” said James, who eventually received his doctorate from CU-Boulder. “We were building an instrument that was going to Pluto. It was an amazing experience with huge responsibilities, it pushed us to do our best, and it definitely shaped who I am today.”
The LDEX instrument, as well as many previous LASP instruments launched into space since the 1970s, will carry a laser engraving of the CU mascot, Ralphie the Buffalo, as well as the names of all university people who participated in the project, from students and scientists to engineers and administrative support staff. “It’s like adding a touch of history to the mission, perhaps for good luck and pride,” said Horanyi. “After all, this is the University of Colorado.”
-CU-
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]