CU News
News from the University of Colorado in Boulder.
CU-BOULDER AND NASA’S SPACE SHUTTLE PROGRAM: TRIUMPHS AND TRAGEDIES
Jul 5th
Of the 19 astronaut-affiliates from CU — 18 from CU-Boulder and one from University of Colorado Colorado Springs — 16 flew on a total of 40 NASA space shuttle missions. The two who flew the most shuttle missions were Jim Voss, (M.S. aerospace engineering, 1974) a current scholar in residence at CU-Boulder who flew five missions, as did CU alumna Marsha Ivins (B.S. aerospace engineering, 1973).
Vance Brand, a Longmont native with two CU-Boulder degrees (B.A. business 1953, B.S. aerospace, 1960), began his astronaut career with the Apollo program — he flew on the historic Apollo-Soyuz mission that brought together astronauts and cosmonauts in space in 1981 — and went on to command three space shuttle flights.
Two CU-Boulder astronaut-alumni died aboard space shuttles. In 1986, Ellison Onizuka (B.S., M.S. aerospace engineering, 1969), was killed when Challenger exploded 73 seconds after liftoff, an event witnessed by millions around the world. In 2003, Kalpana Chawla (Ph.D. aerospace engineering, 1988) perished when Columbia disintegrated over Texas during Earth re-entry.
CU-Boulder’s Air Force ROTC honors the two fallen astronauts annually on campus with a color guard and wreath-laying ceremony.
A celebrated university reunion in space occurred on Dec. 2, 1990, when Columbia blasted off with three CU astronaut-alums. Brand, the Columbia space shuttle commander, was joined by mission specialist John “Mike” Lounge (M.S. astrogeophysics, 1970) and payload specialist Sam Durrance (Ph.D., astrogeophysics 1980) as part of the seven-man crew on the ASTRO-1 mission. Toting four telescopes in the cargo bay, the shuttle mission was the first ever dedicated to astronomy.
In addition to its prominent role in the astronaut program, CU-Boulder has flown dozens of science payloads on NASA’s 135 space shuttle missions. BioServe Space Technologies, a NASA-funded center in the aerospace engineering sciences department, has launched experiments onboard space shuttles 39 times since 1991, using the low-gravity of Earth orbit as a testing ground for a variety of agricultural, biomedical and educational payloads.
BioServe has worked with industrial and academic partners on experiments ranging from bone loss mitigation and the development of new antibiotics to K-12 educational payloads involving butterflies and spiders that drew the participation of more than a million students around the world. BioServe personnel have trained dozens of astronauts to operate their experimental hardware in space, both on the shuttle and the International Space Station.
NASA space shuttles also toted two key instruments developed by teams led by CU-Boulder faculty for the Hubble Space Telescope. The launch of Hubble aboard Atlantis in 1990 included a high-resolution spectrograph designed and built by a team led by CU-Boulder retired Professor John “Jack” Brandt of the Laboratory for Atmospheric and Space Physics. The instrument broke down wavelengths of light emanating from distant celestial objects to determine their compositions, motions and temperatures to help astronomers understand the conditions of the early universe.
Fittingly, the final Hubble repair mission launched in 2009 included a $70 million instrument designed by a CU-Boulder team and constructed with the help of Boulder’s Ball Aerospace & Technologies Corp., which also built the high resolution spectrograph launched on Hubble in 1990. Known as the Cosmic Origins Spectrograph, the CU instrument is being used to probe the fossil record of gases in the early universe for clues to the formation and evolution of galaxies, stars and planets, according to principal investigator and CU-Boulder Professor James Green of the Center for Astrophysics and Space Astronomy.
In 1989, the space shuttle Atlantis carried NASA’s Galileo spacecraft into orbit, the first leg of a six-year journey to Jupiter and its moons. The science instruments included two CU-Boulder ultraviolet spectrographs designed and built by LASP at a cost of $3.5 million under the direction of retired Professor Charles Hord and which were used for research ranging from analyzing complex organic molecules in the Jovian system to documenting the activity of volcanoes on one of Jupiter’s moons, Io.
In 1991, Discovery launched the Upper Atmosphere Research Satellite carrying seven instruments, including an $8 million instrument called the Solar Stellar Irradiance Comparison Experiment, or SOLSTICE, designed and built by LASP. The satellite went on to make accurate measurements of the sun in the ultraviolet and far UV light for a full 11-year solar cycle, allowing scientists to better understand the effects of solar radiation on Earth’s atmosphere and climate, said SOLSTICE Mission Manager Tom Sparn.
CU-Boulder’s LASP also built and flew two space shuttle payloads — one in 1998 aboard Columbia and a second in 2001 on Endeavour — that allowed scientists and students to explore the gentle collisions of particles of dust in space. The experiment provided new insights into the fundamental processes thought to have helped form planetary rings and perhaps played a role in the earliest stages of planet formation.
In addition, a small satellite designed and built by a LASP team that was to be deployed from the Challenger space shuttle in 1986 to orbit Earth and observe Halley’s comet was lost during the tragic explosion.
CU also flew experiments targeting the mechanics of granular material three times on space shuttles — in 1996, 1997 and 2003. Led by civil, environmental and architectural engineering Professor Stein Sture, now CU-Boulder’s vice chancellor for research, and managed by LASP, the tests allowed scientists to observe the behavior and cohesiveness of granular materials in microgravity and have led to a better understanding of how Earth’s surface responds during earthquakes and landslides. The 2003 mission successfully returned data from the in-flight experiments, but the seven astronauts and experimental hardware were lost when Columbia disintegrated during re-entry.
CU-Boulder’s involvement with the space shuttle program also included three payloads designed, built and flown by students, primarily undergraduates, from the Colorado Space Grant Consortium headquartered in aerospace engineering sciences. The first payload, dubbed ESCAPE, and which flew on Discovery in 1993, measured the sun’s effects on Earth’s atmosphere using a spectrometer to record extreme UV solar radiation and a camera to photograph the sun. The effort included the participation of nearly 100 students, primarily undergraduates, over a two-year span.
ESCAPE-2, flown on Atlantis in 1994, was a follow-on version of the Escape 1 payload that probed how solar radiation affected Earth’s thermosphere, a portion of Earth’s upper atmosphere. The payload involved about 75 students, mostly undergraduates, said Colorado Space Grant Consortium Director Chris Koehler.
A third CU-Boulder student-built space shuttle payload known as DATA-CHASER, was a two-part experiment launched aboard Discovery in 1997. The payload included hardware to test advanced remote technologies, as well as instruments to measure the sun in far UV wavelengths. DATA-CHASER was designed and built and tested by dozens of CU-Boulder students, primarily undergraduates, over a three-year span.
So what’s on deck at CU-Boulder following the end of NASA’s space shuttle program, in terms of both manned and unmanned flight vehicles? Hardware and experiments developed by BioServe already are manifested on various international resupply vehicles traveling to the International Space Station as well as on U.S. spacecraft now under development, said BioServe Director Louis Stodieck.
In August 2010 CU-Boulder was one of nine institutions selected by the Federal Aviation Administration to participate in a newly formed Center of Excellence for Commercial Space Transportation. The center focuses on four major research areas: space launch operations and traffic management; launch vehicle systems; commercial human space flight; and space commerce, including law, insurance, policy and regulation. All are aimed at ensuring safe and efficient private human space flight for non-NASA missions, said aerospace engineering Professor Dave Klaus, who directs the new CU-Boulder center.
CU-Boulder also is involved in a research partnership with Sierra Nevada Corp. of Louisville, Colo., which is designing and building a manned spacecraft called the Dream Chaser intended to replace the space shuttle for transporting humans and cargo into low-Earth orbit. Sierra Nevada has received about $200 million in NASA contracts to design and build the vehicle, which will be launched vertically and can land on conventional runways.
As part of its collaboration, Sierra Nevada is funding a CU team led by Klaus to develop methods for evaluating safety and operational aspects of the spacecraft. Klaus’ lab has a mock-up cockpit section of the Dream Chaser being used to test the ergonomic layout for instrument displays and controls. The students on the project are being advised by CU-Boulder’s Voss — who also is a vice president at Sierra Nevada Corp. — and his colleague Joe Tanner, both of whom joined the CU-Boulder faculty after retiring as NASA astronauts.
CU-Boulder currently is housing a full-scale mock-up of the Dream Chaser based on an earlier design of the spacecraft, as well as a 15 percent scale model that was successfully flight tested by a team including Sierra Nevada engineers and CU aerospace engineering faculty and students in December 2010. The hope of Sierra Nevada and CU-Boulder is that the Dream Chaser will provide routine crew transportation to and from the International Space Station as NASA turns its focus to deep space exploration missions.
In December 1990, when the space shuttle Columbia launched, Commander Vance Brand took with him a 10,000-year-old Paleo-Indian spear point that had been discovered on Colorado’s eastern plains. One wonders what the thundering liftoff of a NASA space shuttle might have looked like through the eyes of the earliest Americans, and what the next 10,000 years holds for human exploration of space in the solar system and beyond.
For more information visit the “CU in Space” website at http://www.colorado.edu/news/reports/space/.
CU-BOULDER VICE CHANCELLOR FRANK BRUNO LEAVING CU FOR PRIVATE SECTOR VP POST
Jun 29th
Bruno’s portfolio as vice chancellor of administration covers the physical infrastructure of the campus, human resources, public safety and energy and sustainability. He joined CU-Boulder as vice chancellor for administration in June of 2008.
“We wish Frank well in his future endeavors,” Porreca said. “He has been a key member of our leadership team, a collegial leader who has strengthened our partnership with local government and other CU stakeholders, and he has overseen a large number of programs and personnel with energy and diplomacy.”
Bruno is credited with coordinating the campus’s Ten Year Capital Facilities Master Plan in partnership with community stakeholders, with overseeing campus capital construction that included $500 million in projects, and with expanding CU’s police presence and building key partnerships for sustainability on campus.
“This is a marvelous opportunity for me and my family,” said Bruno. “I want to thank the university community for the last three years. It has been an honor to serve our faculty, staff and students, and to work with great partners in the city, county and state to help one of the great universities in the nation during a time of transformation.”
The university has not announced a successor to Bruno, but expects to take action toward that end in the coming weeks.
CU RESEARCHERS DEVELOP NEW SOFTWARE TO ADVANCE BRAIN IMAGE RESEARCH
Jun 26th
A University of Colorado Boulder research team has developed a new software program allowing neuroscientists to produce single brain images pulled from hundreds of individual studies, trimming weeks and even months from what can be a tedious, time-consuming research process.
The development of noninvasive neuroimaging techniques such as functional magnetic resonance imaging, or fMRI, spurred a huge amount of scientific research and led to substantial advances in the understanding of the human brain and cognitive function. However, instead of having too little data, researchers are besieged with too much, according to Tal Yarkoni, a postdoctoral fellow in CU-Boulder’s psychology and neuroscience department.
The new software developed by Yarkoni and his colleagues can be programmed to comb scientific literature for published articles relevant to a particular topic, and then to extract all of the brain scan images from those articles. Using a statistical process called “meta-analysis,” researchers are then able to produce a consensus “brain activation image” reflecting hundreds of studies at a time.
“Because the new approach is entirely automated, it can analyze hundreds of different experimental tasks or mental states nearly instantaneously instead of requiring researchers to spend weeks or months conducting just one analysis,” said Yarkoni.
Yarkoni is the lead author on a paper introducing the new approach to analyzing brain imaging data that appears in the June 26 edition of the journal Nature Methods. Russell Poldrack of the University of Texas at Austin, Thomas Nichols of the University of Warwick in England, David Van Essen of Washington University in St. Louis and Tor Wager of CU-Boulder contributed to the paper.
Brain scanning techniques such as fMRI have revolutionized scientists’ understanding of the human mind by allowing researchers to peer deep into people’s brains as they engage in mental activities as diverse as reciting numbers, making financial decisions or simply daydreaming. But interpreting the results of brain imaging studies is often more difficult, according to Yarkoni.
“There’s often the perception that what we’re doing when we scan someone’s brain is literally seeing their thoughts and feelings in action, but it’s actually much more complicated,” Yarkoni said. “The colorful images we see are really just estimates, because each study gives us a somewhat different picture. It’s only by combining the results of many different studies that we get a really clear picture of what’s going on.”
The ability to look at many different mental states simultaneously allows researchers to ask interesting new questions. For instance, researchers can pick out a specific brain region they’re interested in and determine which mental states are most likely to produce activation in that region, he said. Or they can calculate how likely a person is to be performing a particular task given their pattern of brain activity.
In their study, the research team was able to distinguish people who were experiencing physical pain during brain scanning from people who were performing a difficult memory task or viewing emotional pictures with nearly 80 percent accuracy. The team expects performance levels to improve as their software develops, and believes their tools will improve researchers’ ability to decode mental states from brain activity.
“We don’t expect to be able to tell what people are thinking or feeling at a very detailed level,” Yarkoni said. “But we think we’ll be able to distinguish relatively broad mental states from one another. And we’re hopeful that might even eventually extend to mental health disorders, so that these tools will be useful for clinical diagnosis.”






















