UNEXPECTED ADHESION PROPERTIES OF GRAPHENE MAY LEAD TO NEW NANOTECHNOLOGY DEVICES
Aug 23rd
The new findings — that graphene has surprisingly powerful adhesion qualities — are expected to help guide the development of graphene manufacturing and of graphene-based mechanical devices such as resonators and gas separation membranes, according to the CU-Boulder team. The experimentsshowed that the extreme flexibility of graphene allows it to conform to the topography of even the smoothest substrates.
Graphene consists of a single layer of carbon atoms chemically bonded in a hexagonal chicken wire lattice. Its unique atomic structure could some day replace silicon as the basis of electronic devices and integrated circuits because of its remarkable electrical, mechanical and thermal properties, said Assistant Professor Scott Bunch of the CU-Boulder mechanical engineering department and lead study author.
A paper on the subject was published online in the Aug. 14 issue of Nature Nanotechnology. Co-authors on the study included CU-Boulder graduate students Steven Koenig and NarasimhaBoddeti and Professor Martin Dunn of the mechanical engineering department.
“The real excitement for me is the possibility of creating new applications that exploit the remarkable flexibility and adhesive characteristics of graphene and devising unique experiments that can teach us more about the nanoscale properties of this amazing material,” Bunch said.
Not only does graphene have the highest electrical and thermal conductivity among all materials known, but this “wonder material” has been shown to be the thinnest, stiffest and strongest material in the world, as well as being impermeable to all standard gases. It’s newly discovered adhesion properties can now be added to the list of the material’s seemingly contradictory qualities, said Bunch.
The CU-Boulder team measured the adhesion energy of graphene sheets, ranging from one to five atomic layers, with a glass substrate, using a pressurized “blister test” to quantify the adhesion between graphene and glass plates.
Adhesion energy describes how “sticky” two things are when placed together. Scotch tape is one example of a material with high adhesion; the gecko lizard, which seemingly defies gravity by scaling up vertical walls using adhesion between its feet and the wall, is another. Adhesion also canplay a detrimental role, as in suspended micromechanical structures where adhesion can cause device failure or prolong the development of a technology, said Bunch.
The CU research, the first direct experimental measurements of the adhesion of graphene nanostructures, showed that so-called “van der Waals forces” — the sum of the attractive or repulsive forces between molecules — clamp the graphene samples to the substrates and also hold together the individual graphene sheets in multilayer samples.
The researchers found the adhesion energies between graphene and the glass substrate were several orders of magnitude larger than adhesion energies in typical micromechanical structures, an interaction they described as more liquid-like than solid-like, said Bunch.
The CU-Boulder study was funded primarily by the National Science Foundation and the Defense Advanced Research Projects Agency.
The importance of graphene in the scientific world was illustrated by the 2010 Nobel Prize in physics that honored two scientists at Manchester University in England, Andre K. Geim and Konstantin Novoselov, for producing, isolating, identifying and characterizing graphene.
There is interest in exploiting graphene’s incredible mechanical properties to create ultrathin membranes for energy-efficient separations such as those needed for natural gas processing or water purification, while graphene’s superior electrical properties promise to revolutionize the microelectronics industry, said Bunch.
In all of these applications, including any large-scale graphene manufacturing, the interaction that graphene has with a surface is of critical importance and a scientific understanding will help push the technology forward, he said.
East Boulder Senior Center to be closed for annual maintenance
Aug 22nd
The West Boulder Senior Center located at 909 Arapahoe Ave. will be open. Meals on Wheels and lunches at Café Classico will not be affected.
City of Boulder Senior Services is a division of the Department of Housing and Human Services. For further information please call 303-441-3148 or 303-441-4150.
Evidence of global climate in Southern Hemisphere
Aug 22nd
SOUTHERN SOUTH AMERICAN WILDFIRES
EXPECTED TO INCREASE, SAYS CU STUDY
A new University of Colorado Boulder study indicates a major climate oscillation in the Southern Hemisphere that is expected to intensify in the coming decades will likely cause increased wildfire activity in the southern half of South America.
The research team used tree rings dating to 1506 to track past wildfire activity in the forests of Patagonia tied to the Southern Annular Mode, or SAM, a climate oscillation that creates low atmospheric pressure in the Antarctic that is tied to warmer and drier conditions in southern South America. The tree rings showed that when SAM was in its positive phase, there were widespread fires in both dry woodlands and rainforests in Patagonia, a region that straddles Argentina and Chile, said CU-Boulder Research Associate Andres Holz, lead study author.
“Our study shows for about the past 250 years, the Southern Annular Mode has been the main driver in creating droughts and fires in two very different ecosystems in southern South America,” said Holz. “Climate models suggest an increase in SAM beginning in the 1960s due to greenhouse gas increases and Antarctic ozone depletion probably will cause this region to be drought-prone and fire-prone for at least the next 100 years.”
A paper on the subject by Holz and CU-Boulder geography Professor Thomas Veblen was published in Geophysical Research Letters.
Holz and Veblen compared past wildfire records for two ecologically distinct regions in Patagonia — the relatively dry region of southern Patagonia in Argentina and the temperate rainforest of Patagonia in northern Chile. While the tree ring historical record showed increased fires in both regions correlated with a positive SAM, the trend has been less pronounced in northern Patagonia in the past 50 years, likely because of fire-suppression efforts there, Holz said.
But the decades of fire suppression have caused the northern Patagonian woodlands to become denser and more prone towildfire during hot and dry years, Holz said.
“Even in areas of northern Patagonia where fire suppression previously had been effective, record surface areas of woodlands and forests have burned in recent years of extreme drought,” said Veblen. “And since this is in an area of rapid residential growth into wildland-urban interface areas, this climate-driven trend towards increasing fire risk is becoming a major problem for land managers and homeowners.”
The two CU-Boulder researchers studied reconstructions of tree rings going back more than 500 years from 432 trees at 42 sample sites in northern Argentina and southern Chile — the largest available data set of annual, readable tree ring records in the Southern Hemisphere. The tree rings, which indicate climate cycles and reveal the scars of old fires, showed that wildfires generally increased in both regions when SAM was in its strong, positive phase.
Although the Antarctic ozone hole stopped growing in about 2000 as a result of a ban on ozone-depleting gases and now appears to be slowly repairing itself, a 2011 paper by researchers at the National Center for Atmospheric Research in Boulder indicates ozone recovery and greenhouse gas influences essentially will cancel each other out, preventing SAM from returning to its pre-1960s levels.
“Before the Industrial Revolution, SAM intensified naturally at times to create drought situations in Patagonia,” Holz said. “But in the last 80 years or so, the natural variation has been overwhelmed by a bias toward a positive SAM phase because of ozone-depleting chemicals and greenhouse gases we have put in the atmosphere.”
The research effort was supported by the National Geographic Society, the National Science Foundation, the CU Beverly Sears Small Grants Program and the Council on Research and CreativeResearch of the CU Graduate School.
“As warming and drying trends continue, it is likely that wildfire activity will increase even in woodland areas where fire suppression has previously been effective,” Holz and Veblen wrote in Geophysical Research Letters.