Posts tagged trees
BEETLE KILL LIKELY TO WORSEN HIGH RUNOFF
Jun 8th
ACCUMULATION AND MELT, SAYS CU-BOULDER STUDY
A new University of Colorado Boulder study indicates the infestation of trees by mountain pine beetles in the high country across the West could potentially trigger earlier snowmelt and increase water yields from snowpack that accumulates beneath affected trees.
Led by CU-Boulder geological sciences department doctoral student Evan Pugh, the study was undertaken near Grand Lake, Colo., adjacent to Rocky Mountain National Park, an area that has been devastated by mountain pine beetle attacks in recent years. Mountain pine beetles have killed more than 4 million acres of lodgepole pine trees in Colorado and southern Wyoming since 1996, the most severe outbreak on record.
Pugh and his team monitored eight pairs of tree stands, each pair consisting of one live stand and one dead stand roughly an acre each in size and located adjacent to each other, sharing the same topography, elevation and slope. The team monitored the two distinct phases of pine beetle tree death during the three-year study — the “red phase” in which dead trees still retained red needles, and the “gray phase” in which all of the tree needles and some small branches had been shed, said Pugh.
The study showed that there was roughly 15 percent more snow accumulation under the gray phase stands than under living stands or red phase stands, likely due in large part to a lack of “snow interception” by needled tree branches that can cause snowflakes to “sublimate” into gas and return to the atmosphere, he said. Gray phase trees also allow more solar radiation through their canopies than live trees and red phase trees, increasing the potential for earlier melt, said Pugh, lead study author.
Snowmelt rates were highest under red phase trees, with snow disappearing up to a week earlier than snow in adjacent, healthy stands even though both received the same amount of snowfall at their bases. Pugh showed the earlier snowmelt in red phase tree stands is due in large part to the amount of litter — needles and branches — that drops or is blown from the trees onto on the snow surface, decreasing its solar reflecting power, or albedo, and causing it to absorb more of the sun’s radiation and heat up slightly.
“This is the first study to look at the potential effects that different stages of mountain pine beetle tree death may have on snowmelt,” Pugh said. “What we are seeing is earlier snowmelt and more snow accumulation in dead forests.”
A paper on the subject was published online today in the peer-reviewed journal, Ecohydrology. The paper was co-authored by CU-Boulder geological sciences Professor Eric Small and funded in part by a CU-Boulder Innovative Seed Grant. Four undergraduates — Leslie Baehr, Tevis Blom, Bryant Kealey and Jon Hammond — received internship credit for helping to conduct the research.
The study took place at the headwaters of the Colorado River in north-central Colorado. Six of the eight healthy tree stands in the study were made up primarily of lodgepole pines, while two were made up of mixed conifer trees. “One of the hardest parts of this study was to find stands of healthy trees in this area,” said Pugh.
The red phase that occurs following tree death usually lasts about 18 months, and the onset of the gray phase occurs about three or four years after tree death, said Pugh.
“One of the big surprises to me was that changes in snowpack depth and snowmelt timing as a result of the pine beetle outbreak were not larger,” said Small. But the continuing effects could become more significant in the coming decades, he said.
The CU-Boulder team used a wide variety of instruments during the study. In addition to avalanche poles used to periodically measure the snow depth at the 16 study stands, the team also inserted tiny thermometers at various snow depths to help them predict when the snow would likely melt. They also dug snow pits in each of the tree stands and weighed known volumes of snow to calculate density and water content.
Pugh’s team also used devices known as pyranometers to measure the snow surface albedo and the transmission of sunlight through forest canopies. Fisheye camera images taken from the snow surface helped the researchers to calculate the size and structure of the various tree stand canopies, he said.
“The students really got something out of working on this project,” said Small. “Not only did they get internship credit, they had a chance to conduct meaningful research.”
A massive fire in the study area in the late 1800s resulted in most of the succeeding lodgepole pines to be about the same size and age, making them easier targets for pine beetles. While mountain pine beetle infestations are natural events, climate change probably has played a role in the most recent outbreak. Drought conditions in the West in recent years have caused living pines to absorb less water, decreasing their ability to produce enough sap to “pitch out” beetles that are attacking them, Pugh said.
Water managers in Salt Lake City have reported extra water in river basins that hydrologic models had not predicted, Pugh said, an indication beetle-killed trees are having an impact on meltwater.
With the exception of two studies in British Columbia looking at the effects of beetle- killed lodgepole pine trees on snow accumulation and melt on flat terrain at a single site, research regarding the hydrologic impacts of mountain pine beetles has largely been speculative, said Pugh.
“Our study is the first to analyze the multiple stages of tree death from mountain pine beetles and their different impacts on snow accumulation and snowmelt,” said Pugh. “There is no on/off switch here — only gradual changes.
“The effects of the beetle-killed tree stands in terms of snow accumulation are not going to affect ski resort seasons by any means,” he said. “What we can say is there likely will be additional water resources for water managers. Additional snowpack coupled with dead trees that are no longer sucking up water will likely lead to more runoff.”
Coalton Trailhead, Meadowlark Trail grand opening to be held June 2
May 24th
Boulder County, Colo. – The Boulder County Transportation and Parks and Open Space departments, along with the Town of Superior, will celebrate the grand opening of the Coalton Trailhead and Meadowlark Trail on Thursday, June 2 at 3 p.m.
A ribbon-cutting will take place at the trailhead – located near the new roundabout intersection of McCaslin Boulevard and Coalton Road in Superior (map) – followed by a guided nature hike.
Amenities for the two-acre area include a shelter with two picnic tables, restrooms, bike racks, trash cans, a dog station, and an information kiosk. The parking lot accommodates 27 cars, two handicapped spaces and three horse trailers, one with horse hitching rails. The trailhead also includes native varieties of trees, shrubs and grasses.
The new 2.7-mile, multi-use Meadowlark Trail extends from the Coalton Trail at its south end to the Mayhoffer-Singletree Trail at the north end. This trail extension completes an approximately 10-mile loop that includes the City of Boulder’s Greenbelt Plateau, and Community Ditch and Cowdrey Draw trails that now connect to the Town of Superior and Boulder County trails. The project area includes the former route of the Morgul-Bismarck Loop of the Coors International Bicycle Classic from the 1980s. This new trail also provides a highly anticipated link to the City of Boulder’s Marshall-Mesa trails, and the county’s Rock Creek and Coal Creek trail systems.
Funding for the improved intersection, trailhead, and multiple phases of the trail system has come from the Boulder County Transportation Improvements sales tax, federal transportation funds distributed through the Denver Regional Council of Governments’ Transportation Improvement Program, and the Town of Superior. Planning was a joint effort of the county’s Transportation and Parks and Open Space departments.
The majority of the land provided for the trailhead and trails is Boulder County Open Space property purchased with Parks and Open Space sales tax funding, with additional parcels provided by Superior.
For more information, please visit the Coalton Trailhead web page.
NEWLY DETECTED CHEMICAL IN SMOKE MAY HAVE SERIOUS HEALTH IMPLICATIONS, SAYS NEW STUDY
May 16th
Cigarette smoking, burning forests and even cooking fires all release a chemical compound not previously known to exist in significant quantities in smoke and which may have potential human health impacts, says a new study involving the National Oceanic and Atmospheric Administration and the University of Colorado Boulder.
The study was conducted by scientists at the Cooperative Institute for Research in Environmental Sciences, or CIRES — a joint institute of CU-Boulder and NOAA — along with researchers from NOAA’s Earth System Research Laboratory.
The molecule, isocyanic acid, is similar to methyl isocyanate, the gas that leaked from a pesticide plant in Bhopal, India, in 1984 killing more than 3,000 people within weeks. “The molecule has hardly been measured before — certainly not in the atmosphere,” said CIRES Fellow Joost de Gouw, coauthor of the new paper published May 16 in the Proceedings of the National Academy of Sciences. “So it was a complete surprise to find it in such large quantities.”
De Gouw and his colleagues were first able to detect isocyanic acid when they developed and tested a new instrument, a mass spectrometer designed to measure gaseous acids in the air. In the laboratory, they found biomass burning — the burning of trees or plant material — produced levels of the molecule approaching 600 parts per billion by volume, or ppbv.
“There is this molecule in smoke that we can now measure and it is there in significant quantities,” de Gouw said. “There are good reasons to believe that it can have significant health impacts.”
In the human body, isocyanic acid dissolves to form charged cyanate molecules, and the researchers found that the acid was very soluble at the pH level of human blood. This means it could potentially enter the bloodstream, said de Gouw. When the exposure levels of isocyanic acid are greater than 1 ppbv, the charged cyanate molecules are expected to be present at levels that can contribute to a variety of human health problems like cardiovascular disease, cataracts and rheumatoid arthritis.
Once the researchers discovered that fires produced the gas at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Mont., they then took their instruments out of the lab to see whether smoke in a “real” environment also gave off this chemical. “We had a new tool to look around us and we just explored,” de Gouw said. “It was basically our chemical curiosity at work.”
Previous studies have shown that burning coal produces isocyanic acid, and the CIRES researchers have discovered the chemical also is present in tobacco smoke and smoke from the combustion of other plant materials. In rural areas of developing countries where biofuels are used for cooking and heating, exposure levels of the acid could be harmful, according to the research team.
But does a real fire, as opposed to a lab fire, give off the acid? The team didn’t have to wait long to find out. Starting on Labor Day 2010, the Fourmile Canyon wildfire raged in the foothills above Boulder, Colo., burning more than 6,000 acres and destroying 169 homes. Scientists at the NOAA Earth System Research Laboratory in Boulder wasted no time in learning what they could about the event.
The team’s spectrometer detected levels of the acid up to 200 pptv in the air at the site, which was downwind from the fire. “Boulder has a world-class atmospheric chemistry building and only once in its lifetime is it going to have a full-on hit from a wildfire,” de Gouw said. “So just about everyone in that building turned on their instruments.”
One possibility was that the acid would only be prevalent in the immediate vicinity of a fire, de Gouw said. “But that didn’t happen,” he said. “We were miles away and it was still there.”
The researchers didn’t constrain their measurements to wildfires. They also used their equipment to find the levels of isocyanic acid in the urban environment of Los Angeles. “In LA we find even when there are no fires there is a little of this acid,” de Gouw said. “So smoke may not be the only source of it in the atmosphere.”
Since more isocyanic acid was measured in the atmosphere during the day, sunlight could be sparking the chemical reactions that make it, de Gouw said. Another potential source in urban air could be emissions from diesel engines outfitted with the latest generation of pollution control equipment that is now being introduced in California and Europe, he said.
“We know so little about isocyanic acid’s behavior in the atmosphere that we want to do a number of follow-up studies, “ de Gouw said. “We have some data in our paper but that is just the beginning and we need to do a lot more work.”
Other authors on the PNAS paper included Jim Roberts, Patrick Veres, Anthony Cochran, Carsten Warneke, Ian Burling, Robert Yokelson, Brian Lerner, Jessica Gilman, William Kuster and Ray Fall.





















