CU News
News from the University of Colorado in Boulder.
CU study: 66 million years ago, an asteroid turned Earth into a crispy critter
Mar 27th
A new look at conditions after a Manhattan-sized asteroid slammed into a region of Mexico in the dinosaur days indicates the event could have triggered a global firestorm that would have burned every twig, bush and tree on Earth and led to the extinction of 80 percent of all Earth’s species, says a new University of Colorado Boulder study.
Led by Douglas Robertson of the Cooperative Institute for Research in Environmental Sciences, or CIRES, the team used models that show the collision would have vaporized huge amounts of rock that were then blown high above Earth’s atmosphere. The re-entering ejected material would have heated the upper atmosphere enough to glow red for several hours at roughly 2,700 degrees Fahrenheit — about the temperature of an oven broiler element — killing every living thing not sheltered underground or underwater.
The CU-led team developed an alternate explanation for the fact that there is little charcoal found at the Cretaceous-Paleogene, or K-Pg, boundary some 66 million years ago when the asteroid struck Earth and the cataclysmic fires are believed to have occurred. The CU researchers found that similar studies had corrected their data for changing sedimentation rates. When the charcoal data were corrected for the same changing sedimentation rates they show an excess of charcoal, not a deficiency, Robertson said.
“Our data show the conditions back then are consistent with widespread fires across the planet,” said Robertson, a research scientist at CIRES, which is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration. “Those conditions resulted in 100 percent extinction rates for about 80 percent of all life on Earth.”
A paper on the subject was published online this week in the Journal of Geophysical Research-Biogeosciences, a publication of the American Geophysical Union. Co-authors on the study include CIRES Interim Director William Lewis, CU Professor Brian Toon of the atmospheric and oceanic sciences department and the Laboratory for Atmospheric and Space Physics and Peter Sheehan of the Milwaukee Public Museum in Wisconsin.
Geological evidence indicates the asteroid collided with Earth about 66 million years ago and carved the Chicxulub crater in Mexico’s Yucatan Peninsula that is more than 110 miles in diameter. In 2010, experts from 33 institutions worldwide issued a report that concluded the impact at Chicxulub triggered mass extinctions, including dinosaurs, at the K-Pg boundary.
The conditions leading to the global firestorm were set up by the vaporization of rock following the impact, which condensed into sand-grain-sized spheres as they rose above the atmosphere. As the ejected material re-entered Earth’s atmosphere, it dumped enough heat in the upper atmosphere to trigger an infrared “heat pulse” so hot it caused the sky to glow red for several hours, even though part of the radiation was blocked from Earth by the falling material, he said.
But there was enough infrared radiation from the upper atmosphere that reached Earth’s surface to create searing conditions that likely ignited tinder, including dead leaves and pine needles. If a person was on Earth back then, it would have been like sitting in a broiler oven for two or three hours, said Robertson.
The amount of energy created by the infrared radiation the day of the asteroid-Earth collision is mind-boggling, said Robertson. “It’s likely that the total amount of infrared heat was equal to a 1 megaton bomb exploding every four miles over the entire Earth.”
A 1-megaton hydrogen bomb has about the same explosive power as 80 Hiroshima-type nuclear bombs, he said. The asteroid-Earth collision is thought to have generated about 100 million megatons of energy, said Robertson.
Some researchers have suggested that a layer of soot found at the K-Pg boundary layer roughly 66 million years ago was created by the impact itself. But Robertson and his colleagues calculated that the amount of soot was too high to have been created during the massive impact event and was consistent with the amount that would be expected from global fires.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
CU study: ‘Sideline quasars’ helped to stifle early galaxy formation
Mar 21st

CU-Boulder Professor Michael Shull and Research Associate David Syphers used the Hubble Space Telescope to look at the quasar — the brilliant core of an active galaxy that acted as a “lighthouse” for the observations — to better understand the conditions of the early universe. The scientists studied gaseous material between the telescope and the quasar with a $70 million ultraviolet spectrograph on Hubble designed by a team from CU-Boulder’s Center for Astrophysics and Space Astronomy.
During a time known as the “helium reionization era” some 11 billion years ago, blasts of ionizing radiation from black holes believed to be seated in the cores of quasars stripped electrons from primeval helium atoms, said Shull. The initial ionization that charged up the helium gas in the universe is thought to have occurred sometime shortly after the Big Bang.
“We think ‘sideline quasars’ located out of the telescope’s view reionized intergalactic helium gas from different directions, preventing it from gravitationally collapsing and forming new generations of stars,” he said. Shull likened the early universe to a hunk of Swiss cheese, where quasars cleared out zones of neutral helium gas in the intergalactic medium that were then “pierced” by UV observations from the space telescope.
The results of the new study also indicate the helium reionization era of the universe appears to have occurred later than thought, said Shull, a professor in CU-Boulder’s astrophysical and planetary sciences department. “We initially thought the helium reionization era took place about 12 billion years ago,” said Shull. “But now we think it more likely occurred in the 11 to 10 billion-year range, which was a surprise.”
A paper on the subject by Shull and Syphers was published online this week in the Astrophysical Journal.
The Cosmic Origins Spectrograph used for the quasar observations aboard Hubble was designed to probe the evolution of galaxies, stars and intergalactic matter. The COS team is led by CU Professor James Green of CASA and was installed on Hubble by astronauts during its final servicing mission in 2009. COS was built in an industrial partnership between CU and Ball Aerospace & Technologies Corp. of Boulder.
“While there are likely hundreds of millions of quasars in the universe, there are only a handful you can use for a study like this,” said Shull. Quasars are nuclei in the center of active galaxies that have “gone haywire” because of supermassive black holes that gorged themselves in the cores, he said. “For our purposes, they are just a really bright background light that allows us to see to the edge of the universe, like a headlight shining through fog.”
The universe is thought to have begun with the Big Bang that triggered a fireball of searing plasma that expanded and then become cool neutral gas at about 380,000 years, bringing on the “dark ages” when there was no light from stars or galaxies, said Shull. The dark ages were followed by a period of hydrogen reionization, then the formation of the first galaxies beginning about 13.5 billion years ago. The first galaxies era was followed by the rise of quasars some 2 billion years later, which led to the helium reionization era, he said.
The radiation from the huge quasars heated the gas to 20,000 to 40,000 degrees Fahrenheit in intergalactic realms of the early universe, said Shull. “It is important to understand that if the helium gas is heated during the epoch of galaxy formation, it makes it harder for proto-galaxies to hang on to the bulk of their gas. In a sense, it’s like intergalactic global warming.”
The team is using COS to probe the “fossil record” of gases in the universe, including a structure known as the “cosmic web” believed to be made of long, narrow filaments of galaxies and intergalactic gas separated by enormous voids. Scientists theorize that a single cosmic web filament may stretch for hundreds of millions of light years, an eye-popping number considering that a single light-year is about 5.9 trillion miles.
COS breaks light into its individual components — similar to the way raindrops break sunlight into the colors of the rainbow — and reveals information about the temperature, density, velocity, distance and chemical composition of galaxies, stars and gas clouds.
For the study, Shull and Syphers used 4.5 hours of data from Hubble observations of the quasar, which has a catalog name of HS1700+6416. While some astronomers define quasars as feeding black holes, “We don’t know if these objects feed once, or feed several times,” Shull said. They are thought to survive only a few million years or perhaps a few hundred million years, a brief blink in time compared to the age of the universe, he said.
“Our own Milky Way has a dormant black hole in its center,” said Shull. “Who knows? Maybe our Milky Way used to be a quasar.”
The first quasar, short for “quasi-stellar radio source,” was discovered 50 years ago this month by Caltech astronomer Maarten Schmidt. The quasar he observed, 3C-273, is located roughly 2 billion years from Earth and is 40 times more luminous than an entire galaxy of 100 billion stars. That quasar is receding from Earth at 15 percent of the speed of light, with related winds blowing millions of miles per hour, said Shull.
-CU-
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
Lyndi McCartney, wife of former CU coach Bill McCartney, dies of emphysema
Mar 21st
WESTMINSTER – Lyndi McCartney, the wife of former University of Colorado football coach Bill McCartney, passed away Thursday afternoon after a lengthy, hard-fought battle with emphysema. She was 70.
“We have four children and 10 grandchildren and we all loved her very much,” Bill McCartney said of his wife for a half century; the two celebrated their 50th wedding anniversary last Dec. 29.
Lyndi spent her last days in Hospice care and was surrounded by family when she finally succumbed after decade-plus long battle against the disease. Grandsons, the sons of daughter Kristy, T.C., a CU graduate assistant coach, and Derek, a freshman on the football team, were among those present when she passed.
The eldest McCartney son, Mike, announced his mother’s passing on his Facebook page with simply, “RIP Mom. I am who I am because of you. Love you.” He works as a player’s representative with Priority Sports out of Chicago.
The youngest son, Marc, posted this on Facebook: “Today I mourn, but my mom suffers no more. She is forever in heaven now and that gives me a great peace that surpasses all understanding. Thank you to all of the people who loved my mom and have been praying for her. Your thoughts and prayers have been a great encouragement and comfort to me and my family.” Marc is the vice president for special events with RightNow, a non-profit ministry in Rockwall, Texas
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]
The couples’ other son, Tom, is the football coach at Fairview High School in Boulder.
Services are pending.
[includeme src=”http://c1n.tv/boulder/media/bouldersponsors.html” frameborder=”0″ width=”670″ height=”300″]